
Web Engineering Research Group
Supervisor: Prof. Dr. Oscar Díaz

2018

Leticia Montalvillo Mendizabal

Supporting the Grow-and-Prune
Model for Evolving

Software Product Lines

_________Ph.D. Thesis

Supporting the Grow-and-Prune Model for
Evolving Software Product Lines

Dissertation
presented to

the Department of Computer Languages and Systems of
the University of the Basque Country

in Partial Fulfillment of
the Requirements for the Degree of

Doctor of Philosophy
(“international” mention)

Leticia Montalvillo Mendizabal

Supervisor: Prof. Dr. Oscar Díaz
San Sebastián, Spain, 2018

This work was hosted by the University of the Basque Country (Faculty of
Computer Science). The author enjoyed a doctoral grant from the University
of The Basque Country (UPV/EHU) from 2014 to 2018. The work was co-
supported by the Spanish Ministry of Education, the European Social Fund and
the University of The Basque Country (UPV/EHU) under contracts TIN2014-
58131-R, TIN2011-23839 (Scripting), and OSADATU UFI11/19.

“A man can only attain knowledge with the help of those who possess it. This
must be understood from the very beginning. One must learn from him who
knows.”

– George Ivanovich Gurdjieff.

Summary

Software Product Line (SPL) engineering has gained considerable momentum.
Top leading companies such as Boeing, Bosch, General Motors, Philips or
Siemens resort to SPLs to broaden their software portfolio, increase return on
investment, shorten time to market, and improve software quality. Full benefits
of SPLs are achieved through automating product derivation out of reusable core-
assets. Ideally, product derivation is limited to indicating the set of features to be
exhibited by products, with no further need for product development. However,
achieving such a degree of reuse is not a one-shot effort but a many year-long
journey. Hence, companies often rely on intermediary stages in which product
teams need to change the core-assets as part of the product derivation process. In
this context, both core-assets and products need to co-evolve.

The so-called grow-and-prune model has proven great flexibility to
incrementally evolve an SPL by letting the products grow, and later prune the
product functionalities deemed useful by refactoring and merging them back to the
SPL core-asset base. Herein, both core-assets and products co-evolve by means of
two sync paths: while product code is progressively ported to the core-asset realm
following the feedback path, products are upgraded with newer functionalities and
bug-fixes released by domain engineers following the update path.

On this ground, this Thesis aims at supporting the grow-and-prune model
as for initiating and enacting the pruning. Initiating the pruning requires SPL
engineers to conduct customization analysis, i.e. analyzing how products have
changed the core-assets. Customization analysis aims at identifying interesting
product customizations to be ported to the core-asset base. However, existing tools
do not fulfill engineers needs to conduct this practice. To address this issue, this
Thesis elaborates on the SPL engineers’ needs when conducting customization
analysis, and proposes a data-warehouse approach to help SPL engineers on the
analysis.

Once the interesting customizations have been identified, the pruning needs

vii

to be enacted, by merging and refactoring product customizations into the core-
asset base. However, this might cause a merge hell, in cases where there is a large
number of conflicts when disparate product developments need to be reconciled.
To address this issue, this Thesis proposes code peering, i.e. a practice whereby
product engineers inspect and compare other products’ code with their own code.
This is intended to promote early reuse across product teams with the aim of
lessening the merge problem. We discuss four design principles that drive how
code peering can be introduced for SPL development, and realize them through
a prototype. Eventually, product code needs to be ported to the core-asset realm,
while products are upgraded with newer functionalities and bug-fixes available in
newer core-asset releases. Herein, synchronizing both parties through sync paths
is required. However, the state of-the-art tools are not tailored to SPL sync paths,
and this hinders synchronizing core-assets and products. To address this issue, this
Thesis proposes to leverage existing Version Control Systems (i.e. git/Github) to
provide sync operations as first-class constructs.

Acknowledgements

Let me start with a quote:

“It is good to have an end to journey toward; but it is the journey
that matters, in the end.”

–Ursula K. Le Guin

A PhD resembles a journey, at least to me. In that sense, what matters is not
the achievement of a doctoral degree (the end), but the skills I sharpened, the
knowledge I gained, and the experiences I lived throughout it (the journey). I owe
gratitude to all the people who travelled with me during this journey/rollercoaster.

First, I owe my deepest gratitude to my supervisor Professor Oscar Díaz.
There are many things I learnt from him. I am specially grateful for his socratic
way of teaching, for inculcating us the importance of the problem statement, for
his patience, his continuous encouragement, his wise council, and for always
seeking the excellence.

I would like to show my gratitude to my teammates too, who turn the lab
into a nice and stimulating working environment, for encouraging me when we
were on a deadline, for bringing cookies and cakes to the coffee breaks, and for
putting up with me whenever I started to talk about product lines, and “my things”.
It has been a pleasure to have all of you as teammates: Jon Iturrioz, Arantza
Irastorza, Maider Azanza, Felipe Ibañez, Iker Azpeitia, Cristóbal Arellano, Gorka
Puente, Josune de Sosa, Jokin García, Itziar Otaduy, Iñigo Aldalur, Juanan Pereira,
Jeremías Pérez, and Haritz Medina.

I am indebted to Thomas Fogdal, functional manager at Danfoss Drives
company, for giving me the opportunity to make a research visit at their place.
I am grateful for his willingness to collaborate, his open mind, his generous
spirit, and his Christmas events, where he cooks like a three-michelin-star-chef
and gathers his team around the table to have lunch and relax. I do not want to
miss the chance to express my gratitude to all the Danfoss engineers that helped

ix

me during my research stage, and for those who participated into the evaluation
sessions even though their agendas were full: Marcus, Hauke, Helene, Martin,
Kent, Henning, Christian, Klaus, Karl, Subhamoy and Supriya.

I want also to thank Danilo Beuche, from Pure-systems company, for
promoting one of our research prototypes (CustomDIFF) in the newsletter of the
pure::variants software release.

My deepest thanks to both Don Batory and Roberto Erick Lopez-Herrejón,
for acting as external reviewers, and for their interest on discussing the the ideas
presented in this Thesis.

Rightly, my family deserves a special mention. I will forever be grateful to
my parents, Miren Karmele Mendizabal and Jesús Manuel Montalvillo, and my
granny “amama Juani”. They have raised us (my sister and me) in values such as,
respect, humbleness, kindness, perseverance, and diligence. But more importantly
they have raised us in love, and they have always encouraged us in every decision
we made. To my sister Adriana, for always drawing a smile on my face when we
connect via Skype. To my beloved Jokin, for his unconditional love, his support,
and for his willingness to discuss my research with him. Thank goodness you
are a PhD in software engineering and you can understand me :-) I want also to
thank my friends, “nire kuadrila”, for being there for me, for understanding my
absences, and for just being yourselves and making me laugh every time we meet.

Finally, I want to thank the Basque Government and the University of the
Basque Country (UPV/EHU) for the economical support I have received during
the years 2014 to 2018, without which this Thesis would not have been possible.

2011

Moved to Barcelona
for MSc studies

Faster
time-to-market

Higher
productivity

Started my PhD
in San Sebastian

Presented at
SPLC’11 conference

in Munich

Problem
Need to keep in sync

reusable assets
and products

Research Question
How to help developers to

synchronize their
developments

A solution: GitLine
 A tool for developers

on top of GitHub

Publications
SPLC15’

2012

Benefits

Reusable Assets

International stay at
Danfoss Drives

(Denmark)

2010

Product A Product B

S o f t w a r e P r o d u c t L i n es

Development
for reuse

Development
with reuse

Moved to Linz for my
bachelor’s final degree project

What
A software

development
method

What for
 To create similar

software products

How
 From a reusable set of

software assets

Product A Product B

Reusable Assets

E R A S M U S
Linz 2 0 0 9 / 1 0

2018

Problem
Need to analyze product

customizations

Research Question
How to analyze those

product customizations

A solution: CustomDIFF
 A data-warehouse

tool & visualizations for
product customization

Publications
REVE’17

 2016

Problem
Merge hell when product

customizations are pruned

Research Question
How to alleviate the merge hell

Solution: PeeringHub
 A tool for product developers

to help peer on other products’
code

Publications
SPLC’18

 2016

2017

? ?Research Question
What has been done

in the are of SPL
Evolution

A solution: SMS
Mapping study

Publications
JSS journal

2018

2014

Figure 1: My thesis journey.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Context . 1
1.3 General problem overview . 4
1.4 Problem statement for “identify”: analyzing product customization 8

1.4.1 Context & definitions . 8
1.4.2 Root-cause analysis . 9
1.4.3 Design Problem . 11
1.4.4 Research questions . 12
1.4.5 Contributions . 12

1.5 Problem statement for “implement”: peering into peers 13
1.5.1 Context & definitions . 13
1.5.2 Root-cause analysis . 14
1.5.3 Design Problem . 15
1.5.4 Research questions . 17
1.5.5 Contributions . 17

1.6 Problem statement for “implement”: synchronizing core-assets
and products . 18
1.6.1 Context & definitions . 18
1.6.2 Root-cause analysis . 20
1.6.3 Design Problem . 22
1.6.4 Research questions . 22
1.6.5 Contributions . 23

1.7 Research Methodology: Design Science Research 24
1.8 Outline . 26
1.9 Conclusion . 28

xiii

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

2 Mapping Software Product Line Evolution 29
2.1 Overview . 29
2.2 Introduction . 30
2.3 Background . 31

2.3.1 A brief on SPLs . 31
2.3.2 Related mapping studies 36

2.4 Method . 38
2.4.1 Phase 1: Planning the review 39

2.4.1.1 Protocol definition 39
2.4.2 Phase 2: Study identification 41

2.4.2.1 Conducting the search 41
2.4.2.2 Filtering studies 43
2.4.2.3 Evaluating the search 44

2.4.3 Phase 3: Data extraction and classification 44
2.4.3.1 Relevant topic keywording 44
2.4.3.2 Data extraction and mapping 49

2.4.4 Threats to validity . 49
2.4.4.1 Selection of studies 49
2.4.4.2 Classification errors 51
2.4.4.3 Evaluation rubric for this mapping study 51

2.5 Mapping of primary studies . 53
2.5.1 Identify change . 54

2.5.1.1 Monitoring customers 54
2.5.1.2 Monitoring the SPL environment 55
2.5.1.3 Monitoring products 55

2.5.2 Analyze and plan change 55
2.5.2.1 Ascertaining the change impact scope 55
2.5.2.2 Decision-making 59
2.5.2.3 Planning and road-mapping 63

2.5.3 Implement change . 65
2.5.3.1 Built-for-change 65
2.5.3.2 Built-with-change 67
2.5.3.3 Change synchronization 69

2.5.4 Verify change . 73
2.5.4.1 Inconsistency detection 74
2.5.4.2 Scalable verification 75

2.6 Analysis of the results . 77

xiv

CONTENTS

2.6.1 RQ1: What types of research have been reported, to what
extent, and how is coverage evolving? 78

2.6.2 RQ2: Which product-derivation approach received most
coverage, and how is this coverage evolving? 80

2.6.3 RQ3: Which kind of SPL asset received more attention
and how is this attention evolving? 81

2.6.4 RQ4: Which activities of the evolution life-cycle received
most coverage and how is this coverage evolving? 83
2.6.4.1 Zooming into identify change 85
2.6.4.2 Zooming into analyze and plan change 85
2.6.4.3 Zooming into implement change 86
2.6.4.4 Zooming into verify change 87

2.7 Summary of the results . 87
2.8 Conclusion . 89

3 Analyzing product customization 91
3.1 Overview . 91
3.2 Problem definition . 92
3.3 Motivating scenario . 94
3.4 A Data Warehouse approach to customization analysis 98
3.5 Requirement analysis . 99
3.6 Dimensional modeling . 103
3.7 Reporting tools . 108
3.8 Evaluation . 112

3.8.1 Participants . 112
3.8.2 Training examples . 113
3.8.3 Procedure . 114
3.8.4 Results . 115
3.8.5 Discussion . 117
3.8.6 Threats to validity . 117

3.9 Related work . 119
3.9.1 Identifying changes at product level 119
3.9.2 Commit untangling . 122
3.9.3 Visualization for SPLs 123

3.10 Conclusion . 125

xv

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

4 Peering into peers 127
4.1 Overview . 127
4.2 Problem definition . 128
4.3 Characterizing the grow phase 130
4.4 The merge problem . 132
4.5 Characterizing “code peering” in SPLs 134

4.5.1 Code comparison for alleviating branch merging 135
4.5.2 Code comparison within an SPL setting 136

4.6 PeeringHub: a peering utility for GitHub 137
4.6.1 PeeringHub: code peering in GitHub 137

4.7 Evaluation . 143
4.8 Related work . 146
4.9 Conclusions . 148

5 Synchronizing core-assets and products 151
5.1 Overview . 151
5.2 Problem definition . 152
5.3 Product derivation: illustrating the challenge 156
5.4 Proposals on VCSs for SPL development 157
5.5 Proposed branching models . 162

5.5.1 A Branching Model For Core-assets 162
5.5.2 A Branching Model For Product Repositories 164

5.6 SPL sync operations as first-
class constructs in VCSs . 167
5.6.1 Product Fork . 167

5.6.1.1 Leveraging GitHub with ProductFork 170
5.6.2 Update Propagation . 171

5.6.2.1 Leveraging GitHub with UpdatePropagation . 174
5.6.3 Feedback Propagation 174

5.6.3.1 Leveraging GitHub with FeedBackPropagation 179
5.7 Conclusion . 179

6 Conclusions 181
6.1 Overview . 181
6.2 Results . 181
6.3 Publications . 183
6.4 Research visits . 183
6.5 Assessment and future research 184

xvi

CONTENTS

6.6 Conclusion . 187

A Papers on SPL evolution classified on facets 189

B ETL at CustomDIFF 199
B.1 Algorithms for the ETL process 199

C A brief on git 209
C.1 Version Control Systems . 209
C.2 A brief on Git and GitHub . 210

C.2.1 Data Structures: the Git Object Model 210
C.2.2 Git Basic Operations . 212

C.3 Branching models in VCSs . 215

Bibliography 219

xvii

List of Figures

1 My thesis journey. xi

1.1 SPL maturity stages: from less mature (left) to more mature
(right)[DSB05]). 2

1.2 Grow-and-prune process’ main operations: growing might be due
to customer requests, while pruning might involve both feedback
and update propagations. 3

1.3 What the SPL literature on SPL evolution is not solving for the
grow-and-prune model. Nodes with a green check mark () are
tackled in this Thesis. Refer to chapter 2 for a detailed literature
review on SPL evolution. The map is online at MindMeister
https://tinyurl.com/y7sdyb7w. 6

1.4 Mind map depicting the root-cause analysis for customization
analysis. Interact with it online at https://tinyurl.com/yay46us8. . . 9

1.5 Mind map depicting the root-cause analysis for peering into peers.
Interact with it online at https://tinyurl.com/y9fqucpe. 14

1.6 Mind map depicting the root-cause analysis for propagating
changes between core-assets and products. Interact with it online
at https://tinyurl.com/ya777m2x. 19

1.7 Design Science Research (DSR) Cycles (taken from [Hev07]). . . 24
1.8 Chapter map. 26

2.1 Types of changes (based on [BP14, Kla08]). 32
2.2 Systematic Mapping Study process (adapted from [PFMM08a]). . 38
2.3 Study identification process. 42
2.4 Elaborating on the “Evolution activity” facet. 54
2.5 Distribution of studies over publication venues: types (left) and

individuals (right). 78
2.6 “Research type” over time. 79

xix

https://tinyurl.com/y7sdyb7w
https://tinyurl.com/yay46us8
https://tinyurl.com/y9fqucpe
https://tinyurl.com/ya777m2x

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

2.7 “Product derivation approach” over time. 80
2.8 “Asset type” over time. 82
2.9 “Evolution activity” over time. 83
2.10 A finer-grained classification for SPL “Evolution activity”. 84
2.11 Mapping “Analyze and plan change” across facets “Asset type”

and “Research type”. 85
2.12 Mapping “Implement change” across facets “Asset type” and

“Research type”. 87
2.13 Mapping “Verify change” across facets “Asset type” and

“Research type”. 88

3.1 Depicting the problem definition for customization analysis with
a mind map. Interact with it online at https://tinyurl.com/yay46us8. 92

3.2 WeatherStationSPL branching model: the master branch holds the
core-assets baselines from where SPL products are branched off. . 95

3.3 Sensors.js core-asset at Baseline-v1.0. The snippet shows two
variations points. VP1 applies when either WindSpeed or
AirPressure are selected. VP2 applies for Temperature. Notice
how VP2 is scoped within VP1. 95

3.4 Traditional DIFF visualization: differences of file sensors.js
between the one in the Master branch (core-assets) and the one
in the productBerlin branch. 97

3.5 Goal, decisions and information needs for customization analysis.
Notation along the profile introduced in Mazon et al. [MPT07] for
DW requirements. 99

3.6 Time spent on solving information needs for Customization
Analysis. The question description is followed by the average
importance obtained from the questionnaire in Table 3.2. 102

3.7 Start/Snowflake schema for CustomDIFF. 105
3.8 CustomDIFF screenshot: Position map (left) and Analysis canvas

(right). The Analysis canvas displays the alluvial diagram to
assess the customization effort for parent-features (left axe) and
products (right axe). Customizations conducted outside VP
bodies (impacting no feature) are collected under the name “No
Feature”. 107

3.9 Drilling-down scenario. Breaking down customization efforts for
Sensors by Sensors’ child features (top); next WindSpeed’s assets
(middle), and finally raw facts (bottom). 109

xx

https://tinyurl.com/yay46us8

LIST OF FIGURES

3.10 Stream-based drill down. Simultaneously breaking down the
customization effort for Sensors and productParis’ packages. . . . 110

4.1 Mind map depicting the root-cause analysis for peering into peers.
Interact with it online at https://tinyurl.com/y9fqucpe. 129

4.2 WeatherStationSPL branching model: the master branch holds the
core assets baselines from where SPL products are branched off.
At time t3 productDenmark conducts code peering. 130

4.3 Sequence diagram depicting the grow stage. 131
4.4 The merge problem illustrated: the time since the last merge

and the amount of changes introduced since then, exacerbate the
merge problem. 133

4.5 A 3-way comparison in KDiff3 for sensors.js. The comparison
involves three branches (see Figure 3.2): Baseline-v1.0
(A), productDonosti (B) and productDenmark (C). Note how
sensors.js is being changed in productDonosti for two variation
points: VP-1 and VP-2. 135

4.6 Product-branch display in GitHub. The inlayed peering bar hints
customization endeavors i for the productDenmark’s features. . . . 139

4.7 Alluvial diagrams reachable from peering bars. The
display shows two flows (i.e. customization efforts):
(1) from productDenmark into its features, and (2), from
productDenmark’s features to sibling SPL products. 140

4.8 KDiff3 enactment that results from clicking on the (WindSpeed,
productDonosti) arch in Figure 4.7. 141

4.9 Feature-based slicing for diff(Baseline-v1.0.sensors.js,
productDonosti.sensors.js). The diff-output (left) is broken
down based on variation points (right). Each slice accounts for a
patch function. 143

5.1 Depicting the problem definition for propagating changes
between core-assets and products with a mind map. Interact with
it online at https://tinyurl.com/ya777m2x. 152

5.2 The SPL synchronization challenge (adapted from [KC13]) 155
5.3 A closer look into the scenario described in Figure 5.2: branching

impact due to (1) Product Fork, (2) Update Propagation and
(3) Feedback Propagation. CA stands for the core-assets of the
sample SPL. 163

xxi

https://tinyurl.com/y9fqucpe
https://tinyurl.com/ya777m2x

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

5.4 Product Fork involves 3 branches & 3 commits. 168
5.5 Leveraging GitHub with ProductFork 170
5.6 Update Propagation involves 1 commit for each core-asset

updated core-asset & 1 pull_request 173
5.7 Leveraging GitHub with UpdatePropagation: enacting (top) and

outcome (bottom). 175
5.8 Feedback Propagation involves 1 branch & 1 commit for each

Custom branch involved & 1 pull_request 177
5.9 Leveraging GitHub with FeedBackPropagation: enacting (top)

and outcome (bottom). 178

B.1 WeatherStationSPL branching model: the master branch holds the
core assets from where SPL products are branched off. 199

B.2 The diff-output (a.k.a. patch) for the DIFF(C5, C17), w.r.t file
sensors.js file. 203

B.3 Custom_diffs obtained after applying Algorithm B.2 to the diff-
output in Figure B.2: VP-1 (top) and VP-2 (bottom). 207

C.1 Git Object Model . 211
C.2 Commit operation . 213
C.3 Branch + Commit Operation . 213
C.4 Merge Operation . 214
C.5 Fork Operation . 214
C.6 GitHub additional object Model (partial model). 215
C.7 Branching models for CPF (single-systems). 217

xxii

List of Tables

2.1 Related mapping studies. 35
2.3 CIA scenarios. 56
2.4 Classification of studies based on the decision to be taken. 60

3.1 WeatherStationSPL features at Baseline-v1.0. 96
3.2 Rating the importance of information needs along a 5 point

LIKERT scale. 101
3.3 Experiment: products and customization effort per feature. 113
3.4 CustomDIFF’s perceived usefulness. 115
3.5 CustomDIFF’s perceived ease of use. Evaluation along a LIKERT

scale from 1 (total disagreement) to 7 (total agreement). 116
3.6 CustomDIFF’s specific utilities. Evaluation along a LIKERT

scale from 1 (total disagreement) to 7 (total agreement). 116
3.7 Danfoss Drive SPL contextual data along Petersen’s facets

[PW09]. 118
3.8 Related work on monitoring the application engineering process. . 120
3.9 Related work on SPL visualization, along facets: who, what, why

and visualization means. 123

4.1 PeeringHub perceived usefulness and ease of use based on Davis’
template. 145

4.2 Related work on monitoring the application engineering process. . 146

5.1 VODPlayer-PL core-assets. 156

xxiii

Chapter 1

Introduction

1.1 Overview
This chapter provides the reader with an overview of the Thesis. Section 1.2
contextualizes the Thesis, while Sections 1.3, 1.4, and 1.6 describe the problems
that this Thesis tries to solve. Finally, Section 1.7 introduces the research
methodology followed in this Thesis.

1.2 Context
Software Product Lines (SPL). SPL engineering has gained considerable
momentum. Companies such as Boeing, Bosch, General Motors, Philips or
Siemens resort to SPLs to broaden their software portfolio, increase return on
investment, shorten time to market, and improve software quality1 [CN01a,
vdLSR07, Wei08]. In essence, SPLs aim at supporting the development of a whole
family of software products through a systematic reuse of shared assets [CN01a].
To this end, SPL development is separated into two interrelated processes: (1)
domain engineering (DE), where the scope and variability of the system is defined
and reusable core-assets are developed; and (2) application engineering (AE),
where products are derived by selecting and resolving variability [PBvdL05a,
vdLSR07, CN01b].

In order to obtain the full benefit, SPL engineering aims at automating product
derivation out of the reusable core-assets. These assets are characterized in terms

1Refer to http://splc.net/hall-of-fame/ for a list of successful SPL examples.

1

http://splc.net/hall-of-fame/

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Am
ou

nt

of
 e
ffo

rt

Standardized
infrastructure

Platform Software
Product Line

Configurable
Product Family

Scope of reuse

Figure 1.1: SPL maturity stages: from less mature (left) to more mature
(right)[DSB05]).

of features, i.e. distinctive user-visible aspects, qualities, or characteristics of
the SPL products. Ideally, product derivation is limited to indicating the set of
features to be exhibited by products (so called "product configuration"), with
no additional need for product development (“product customization” hereafter).
In this scenario, products are obtained through a fully “Configurable Product
Family” (refer to Figure 1.1), where almost the 100% of the effort is dedicated by
domain engineers to the building of reusable assets, and, product customization
does not exist. However, real scenarios might be far from ideal.

SPL Evolution. First, reaching a “Configurable Product Family” is hardly
a one-shot effort but rather the result of a many year-long journey [KJK+06].
As shown in Figure 1.1, this might require intermediary stages (e.g. “Platform”,
“Software Product Line”), in which the reusable core-asset base does not fully
support products’ needs, and hence, application engineers need to develop the
remaining functionalities themselves. Indeed, experiences from industry revealed
that SPL adoption is frequently initiated with a partial core-asset baseline release
that is first refactored from (a subset of) existing product variants, and gradually
enlarged with newer functionalities extracted from products derived from it (e.g.
[JB09, KST+14, TFC+09]). These newer functionalities are made available in
the next SPL release, i.e. the set of core-asset, tested and ready to be reused
by application engineering teams, from which newer products can derived and
existing ones updated with newer functionality. Herein, a critical decision is the
pace at which these SPL releases are made available. Commonly SPL releases
come at heartbeats, i.e. regular intervals (e.g. twice a year) [Bre, GSLC14]. The
benefits of heart-beaten releases is that released core-assets are supposed to work
together. The downside is latency: it is not until the next SPL release that products
can benefit from the core asset new versions. Similarly, it is not until the next SPL

2

Chapter 1. Introduction

2 months

Platform
backlog

New platform
release

Product-A
backlog

New product
release

Product-N
backlog

New product
release

5 weeks

2 weeks

Refactoring request

Predictive changes
request

Update propagation
 requests

Customer requests

Update propagation
 requests

Feedback propagation
requests

Customer requests

Figure 1.2: Grow-and-prune process’ main operations: growing might be due
to customer requests, while pruning might involve both feedback and update
propagations.

release that any of the product customizations promoted to core assets can be
reused by other products. This might hinder products’ time-to-market.

Second, even if SPLs have reached a “Configurable Product Family” level,
SPLs might reach an scale and complexity that make them infeasible to evolve in
a short time frame. Hence, when an organization aims to react to market events
or urgent customer requests, strategies are needed to support fast adaptation, e.g.
with product-specific extensions [DSB05, Jen07, Sch06a]. The bottom line, is that
product customization can not always be avoided. Either because the SPL is on an
“intermediary stage”, or because the “SPL environment” forces the SPL to react
faster through product customization. In this sense, highly customized products
might be the symptom of not-yet fully mature SPLs, or volatile markets. Yet
customized products uncover the potential of future SPL features, e.g. pointing
to new customer requirements or new market niches. The question would be how
to drive the evolution of the SPL taking into account that both core-assets and
products need to co-evolve. The answer very much depends on the SPL evolution
model.

3

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

The grow-and-prune model. This model distinguishes between two stages
during SPL evolution: grow & prune. The model allows products to grow once
derived from the SPL core-asset base, and later prune the (product) functionalities
deemed useful by refactoring and merging [FV03]. In this setting, both core-
assets and products co-evolve by means of two paths: while product code is
progressively ported to the core-asset realm following the feedback path, products
can also be upgraded with newer functionalities and bug-fixes released by domain
engineers following the update path. Figure 1.2 illustrates this scenario where it is
easy to guess the rise of eventual tensions between domain engineers in the pursuit
of quality and re-use effectiveness, and application engineers who are pushed by
time-to-market and customer pressures. In this context, some issues arise. The
next Section provides a general overview of the problem.

1.3 General problem overview
Evolving SPLs with the grow-and-prune model is challenging. The key is to find a
balance between the right amount of growth and pruning [FV03]. Support for the
grow-and-prune model should be given along the steps in the change/evolution
mini-cycle proposed by Yau et al. [YCM93]:

1. Identify change. This step deals with identifying product customization.
This requires to keep track of the customization effort involved in
adapting the reusable core-assets for product-specifics, so that engineers
can afterwards perform the required analyses in order to know how exactly
derived products are changing the reusable core-assets; which are the
most changed core-assets; and which are the products most customized.
Hereafter, we refer to this practice as “customization analysis”. The main
problem is that customization analysis is time-consuming and error-prone,
due to the lack of tools to provide a holistic view of product customization
in terms of SPL concepts, i.e. “product” and “feature”.

(a) This Thesis aims at aiding engineers to perform customization
analysis. Section 1.4 delves deeper into the problem statement of this
issue.

2. Analyze and plan change. This step deals with analyzing which of the
previously identified product customizations (the growth) deserves to be
promoted to the core-assets base, and when it should be made. This

4

Chapter 1. Introduction

requires to balance between the costs of refactoring and merging product
customizations into the core-asset base, and the benefits of having them as
reusable assets. Herein, cost models, impact analysis and risk assessments
should support the decision.

(a) This Thesis does not aim at contributing to this issue.

3. Implement change. This step deals with enacting the pruning, i.e.
propagating changes between core-assets and products to keep them
synchronized. Product customizations are pruned into the core asset base
through feedback propagations, while products can also be upgraded with
newer functionalities and bug-fixes through update propagations. Here, two
issues arise:

(a) merging and refactoring of product customizations into the core-
asset base is difficult and time-consuming (a.k.a merge problem), due
to the large number of conflicts that arise when disparate product
developments are merged together.

i. This Thesis aims at lessening the chances for merge conflicts.
Section 1.5 delves deeper into the problem statement of this issue.

(b) propagating changes between core-assets and products is time-
consuming and error-prone, due to the lack of adequate tools

i. This Thesis aims at aiding engineers on keeping both parties in
sync. Section 1.6 delves deeper into the problem statement of this
issue.

4. Verify change. This step deals with verifying and validating that
propagated changes due to the pruning, do not affect the SPL products in
an unexpected way. This would require to run regression tests on all the
affected products.

(a) This Thesis does not tackle this issue.

From the evidences gathered from a Systematic Mapping Study (SMS) we
conducted, we could conclude that the state of-the-art in SPL evolution provides
little support for SPL evolution in a grow-and-prune setting (refer to chapter 2
for a detailed account on the SMS). Figure 1.3 depicts the concerns not solved by
the SPL evolution research in a grow-and-prune setting. Concerns are arranged

5

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure
1.3:W

hatthe
SPL

literature
on

SPL
evolution

is
notsolving

forthe
grow

-and-prune
m

odel.N
odes

w
ith

a
green

check
m

ark
(

)are
tackled

in
thisThesis.R

eferto
chapter2

fora
detailed

literature
review

on
SPL

evolution.
The

m
ap

is
online

atM
indM

eister
https://tinyurl.com

/y7sdyb7w
.

6

https://tinyurl.com/y7sdyb7w

Chapter 1. Introduction

along the steps in the evolution mini-cycle (nodes with white background). Those
nodes with a green check mark () are those investigated in this Thesis. The
yellow nodes state the problem statements tackled by this Thesis. Specifically, we
abound on the “identify” and “implement” change steps.

The next two Sections delve deeper on the two problems addressed by this
Thesis. Methodologically, we resort to Design Science Research (DSR). DSR
addresses design science problems (see Section 1.7), which tackle the design
of artifacts to interact with a real world problem context in order to improve
something in that context. First, we resort to root-cause analysis to methodically
identify and correct the root causes of a problem. Second, when formulating
design problems, we resort to Wieringa’s [Wie14] template:

Improve <a problem context>
by <(re)designing an artifact>
that <satisfies some requirements>
in order to <help stakeholders achieve some goals>

The template provides information about what context is going to be improved, by
the design of which artifact, such that a set of requirements are fulfilled, in order
to meet stakeholders’ goals. To exercise the template with an example, take the
design problem of planning routes for aircraft taxiing on airports [tM10]:

Improve taxi route planning of aircraft on airports
by designing multi-agent route planning algorithms
that reduces taxiing delays
in order to increase passenger comfort and further reduce

airplane turnaround time

For each of the problems tackled in this Thesis, we provide: (1) the context
and key definitions, (2) the root-cause analysis of the problem to be solved, (3)
the design problem formulated along Wieringa’s template, (4) the set of research
questions to be addressed, and finally, (5) the contributions.

7

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

1.4 Problem statement for “identify”: analyzing
product customization

1.4.1 Context & definitions

Following the grow-and-prune model, products can grow to meet customer
changing needs or to resolve urgent bug-fixes. This growth can be achieved by
adapting the core-assets from which products were derived, or by creating brand-
new product specific assets. In the context of this Thesis, we refer to this growth
as “product customization”, or just, “customization”. Hence,

product customization takes place during product derivation, and refers to the
process of changing the core-assets from which products were derived from,
or create brand-new assets, in order to meet customer needs, or to resolve
urgent bug-fixes.

Eventually, product customization needs to be pruned, by refactoring and merging
into the core-asset base. The pruning is initiated with the “identify change”
step, to identify product customization. This requires SPL engineers to elucidate
whether (and which) products have customized the core-assets they were derived
from, and analyzing how. Herein, a new range of questions might arise: how
much effort are product developers spending on product customization?; how can
customizations be promoted to core-assets?; which are the most customized core-
assets?; to which extent is core-asset code being reused for a given product?; etc.
This requires to look at the differences between core-assets and namesake assets
once customized by products. In the context of this Thesis, we refer to this practice
as “customization analysis”. Hence,

customization analysis is the practice by which SPL engineers analyze
how products have changed the core-assets they were derived from.
Customization analysis is intended to help SPL engineers identify
interesting customizations to be promoted to reusable core-assets for the
next core-asset release.

The following Section introduces the problem that rises within this context, and
its root-cause analysis.

8

Chapter 1. Introduction

Figure 1.4: Mind map depicting the root-cause analysis for customization
analysis. Interact with it online at https://tinyurl.com/yay46us8.
1.4.2 Root-cause analysis
Figure 1.4 depicts the below-mentioned root-cause analysis as a mind
map. The reader is encouraged to interact with the mind map online at
https://tinyurl.com/yay46us8. The nodes can be unfolded to uncover the
supporting evidences for each of the claims.

Problem statement

• Analyzing how products customized core-assets is time-consuming and
error-prone.

Cause

• Large number of files to be reviewed. Anastasopoulos et al. [Ana09]
provide a list of the steps that engineers should manually perform in order
to know if any product has changed a given core-asset. Herein, traditional
DIFF utilities are helpful, as they help engineers spot the differences
between the core file and the same file once customized by a product (e.g.
[FV03, SSRS16]). However, this one-diff-at-a-time approach can hardly
scale up to SPLs, where both products and core-assets can easily account
for hundreds of files.

9

https://tinyurl.com/yay46us8

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

• Low abstraction level at which analysis is conducted. Not only
engineers face a “bunch” of diffs to analyze, but this analysis requires to
be done at higher levels of abstraction. Faust et al. [FV03] briefly reported
how the SPL engineers at Deutsche Bank developed an script that computed
how much code was specific to a product (measured by the lines of code).
However, as the authors themselves recognize, this was not sufficient for
engineers, and they ended up manually inspecting the code. Files are an
implementation notion. By contrast, “product” and “feature” are abstract
notions that are fleshed out through files. Analysis should then abstract
away from files and be rephrased in terms of “product” and “feature”.

• Lack of dedicated visualizations. Traditional diff utilities do not scale
up to the potential thousand of changes that might be involved in a SPL.
Appropriate tools are needed, not only to compute product customizations
at feature and product abstraction levels, but also capable of “properly”
visualizing these insights.

Consequences The pressure to deliver a new SPL core-asset release, together
with an overwhelming set of customizations to analyse, risk the next SPL release
not to fulfill the product needs (i.e. the right set of customizations will not
eventually be pruned). If the next SPL release does not fulfill product needs,
following consequences occur:

• Reuse decay. Products would perform more product customization, and
reuse less from the SPL core-asset base. Products would then deviate from
the SPL core-asset base, which risk a reuse decay [CKM+08][NNK16], i.e.
a situation where products have degenerated that much from the SPL that
products no longer reuse assets from the SPL, as they are not deemed useful
anymore; or if deemed useful, integrating them into the product is so costly
that it does not compensate to reuse it (due to the high number of conflicts
between the new core-assets and the customized code).

• Productivity drop and higher time-to-market. If application engineers
start to rely more and more in product customization, this would directly
lower down their productivity, and would in turn increase the time-to-
market of the products.

How can we help with the problem of “analyzing how products customized core-
assets is time-consuming and error-prone”? Next Section provides the design
problem along Wieringa’s template.

10

Chapter 1. Introduction

1.4.3 Design Problem

Design problems assume a context and stakeholders goals, and call for an artifact
such that the interactions of (artifact × context) help stakeholders to achieve their
goals [Wie14]. Our design problem formulated along the lines of Wieringa’s
template could be described as follows:

Improve customization analysis

by designing a data warehouse approach

that satisfies scalability & usefulness (as for satisfying engineers’
information needs) so that SPL engineers can effectively conduct the
“identify” step during SPL evolution

This template reads as follows. The context to be improved would be
“customization analysis”, and the goal to achieve would be for SPL engineers
to effectively conduct the “identify” step during SPL evolution, i.e. identify
all the customizations that happened in products. To this end, we advocate
for the design of an artifact: a data warehouse (DW). This purposeful artefact
needs to address a set of requirements. First, the artifact must be scalable,
as product customizations can account for hundreds of files across hundreds of
different products. In this sense, DW approaches are well known to be capable
of dealing with big volumes of data. Second, the design of the data warehouse
needs to fulfill the “information needs” required by the SPL engineers when
conducting customization analysis (e.g. “which are the most changed features by
the products?”,“how has the product PA customized the feature FA”). Gathering
the data for these information needs might require to access heterogeneous
data from different and multiple information systems. To this end, raw data
is conducted through an Extract, Transform, Load (ETL) process that ends up
being arranged in a star schema, which accounts for facts (i.e. the aspects to
be measured) and dimensions (i.e. the ways measures are going to be broken
down). Finally, product customization needs to be visually depicted. When
product customization accounts for hundreds or thousands of records, information
can be better understood with visual representations.

On these grounds, we believe DW techniques might tackle “satisfies
scalability & usefulness” for improving “customization analysis”. Next Section
lists the set of research questions (RQs) addressed in this Thesis.

11

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

1.4.4 Research questions
The use of DWs for customization analysis raises a set of research questions
(RQs). These are listed next.

RQ1: Which are the information needs for customization analysis? For each
information need, how much time is needed to get it?

By investigating this RQ, we aim at obtaining the set of information needs required
by the SPL engineers when conducting customization analysis (e.g. “which are
the most changed features by the products?”, “How has the product PA customized
the feature FA”). These are the requirements that need to be met by our DW
approach. We also look into how much time SPL engineers need to get those
“information needs” when performing customization analysis.

RQ2: To what extent can previous information needs be satisfied through a data
warehouse? If so, what would its star schema look like?

By investigating this RQ, we aim at designing a DW approach that captures the
information needs previously identified. The star schema needs to be designed to
support the analysis of customization (i.e. facts) at different levels of abstraction
(i.e. dimensions).

RQ3: How can customization analysis be visualized?

By investigating this RQ, we aim at visually representing product customization
to easy customization analysis at a glance.

1.4.5 Contributions
This Thesis aims at contributing to the previous research questions as follows:

RQ1. We elaborate on the information needs that arise during SPL evolution
scenarios (“feature evolution” and “product evolution”). The importance
of each information need, and the required time to get them are validated
through a questionnaire delivered to SPL practitioners.

RQ2. We developed CustomDIFF, a DW approach to customization analysis
that uses Git as the operational system from where fact data is obtained,
and pure::variants as the SPL framework. The designed star schema
allows SPL engineers to aggregate customization facts along different

12

Chapter 1. Introduction

levels of abstraction, such as, product, feature, core-asset and component.
CustomDIFF has been tested with SPL practitioners to evaluate its
usefulness and use of use for customization analysis.

RQ3. We resort to Alluvial diagrams to visualize the customization effort at a
glance. These diagrams are a type of flow diagrams. Here, the flow stands
for the customization effort that goes from core-assets to SPL products
where customization was needed.

1.5 Problem statement for “implement”: peering
into peers

1.5.1 Context & definitions
The pruning requires that those product customizations deemed useful are
integrated into the core-asset base by merging and refactoring [FV03]. Note,
that due to the previous “grow” phase, products might have diverged to much
from each other. During the pruning domain engineers need to reconcile these
divergences by resolving the conflicts that arise from merging together disparate
product customizations. The higher the divergences between the products, the
higher the conflicts and the complexity to resolve them. When the time to resolve
these conflicts exceed the time needed to perform the original changes, we are
in the so-called merge problem situation [Duv07] (a.k.a integration hell or merge
hell). Hence, the

merge problem arises during the pruning stage, when disparate product
customizations are merged into the core-asset base resulting in a multitude
of conflicts, whose time to be resolved exceed the time it took to make the
original changes.

Our hypothesis is that providing application engineers integrated support for
looking into other products’ code right during product development, promotes
early reuse across products and small refactoring improvements, in the search
lessening the conflicts of merge problem that occurs during the pruning. We refer
to this practice as “code peering”. Hence,

Code peering (or peering) refers to the practice that takes place during product
development, whereby product engineers inspect and compare other

13

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure 1.5: Mind map depicting the root-cause analysis for peering into peers.
Interact with it online at https://tinyurl.com/y9fqucpe.

products’ code with their own code, and if interested, merge them together.
Code peering is intended to promote early reuse of product developments
across product teams, with the aim of lessening the merge problem during
pruning.

The next Section delves deeper into the problem and its root-cause analysis.

1.5.2 Root-cause analysis
Figure 1.5 depicts the root-cause analysis as a mind map. The reader is
encouraged to interact with the mind map at https://tinyurl.com/y9fqucpe. The
nodes can be unfolded to uncover the supporting evidences for each of the claims.

Problem statement

• Merging and refactoring product customizations into the core-asset base is
difficult and time-consuming.

Causes

• Large amount of conflicts. During the growth phase, products detach
from the core-asset baseline, and follow their own life-cycle, without paying
attention to what other product teams are developing. The more the products

14

https://tinyurl.com/y9fqucpe
https://tinyurl.com/y9fqucpe

Chapter 1. Introduction

deviate from each other during the growth phase, the higher the chances
for conflicts during the merge. These conflicts arise in cases where across
product teams, the same functionality is implemented multiple times (but
differently in each product) [DSB05, TMMK11]. Afterwards, domain
engineers need to reconcile these different implementations into a single
one that subsumes all of the others. Additionally, in cases where different
functionalities are implemented across different products, conflicts also
arise when these all need to be merged. What is needed is a way so that
product teams do not deviate that much from each other, hence, facilitate
the later merging. The difficulty of the merge conflicts, and hence, the time
needed to resolve them is influenced by (1) the complexity of the conflicting
lines, (2) the knowledge of the developers on the conflicting code, (3) the
complexity of the files with conflict, and (4) the number of conflicting lines
[MNSD17].

• Large amount of product customizations. The higher the number of
products and product customizations, the higher the the chances for conflicts
when these are merged together.

Consequences

• Productivity drop & higher time-to-market. The integration work and
effort for porting product customizations into the core asset can become
a major part in the DE teams work load, if there are many product
customizations to prune, and if these cause a large amount of conflicts to
resolve. This reduces the time for DE to work on feature improvements and
new feature requests [JB09]. This paces down the next core-asset baseline
release, compromising product’s time-to-market.

How can we help with the problem of “merging and refactoring product
customizations into the core-asset base is difficult and time-consuming”? Next
Section provides the design problem along Wieringa’s template.

1.5.3 Design Problem
Our design problem formulated along the lines of Wieringa’s template [Wie14] is
as follows:

Improve the merge problem

15

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

by leveraging Web Augmentation, Data Warehouse and 3-way
comparison techniques for code peering
that satisfy respect focus and compatibility
so that the chances for conflicts are lessen and SPL engineers can
effectively conduct the “implement” step during SPL evolution

This template reads as follows. The context to be improved would be “the merge
problem” that arises during the pruning of product customizations, and the goal
to achieve would be for SPL engineers to effectively conduct the “implement”
step during SPL evolution, i.e. merging and refactoring product customizations.
To this end, we advocate for leveraging Web augmentation (WA) [DA15], Data
Warehouse (DW), and 3-way comparison&merging techniques to provide peering
functionality. Web augmentation permits third parties to adapt Web sites, data
warehouse techniques enable making better and faster decisions [KR02], and
3-way comparison&merging techniques help engineers compare&merge two
versions of a file while also considering the origin of both files (a.k.a. common
ancestor) [3waa].

In this Thesis, we utilize web augmentation techniques to enhance Github,
the most popular web-based Git-based Version Control System (VCS) repository
hosting service, with a peering bar that makes product teams aware of what
features are other product teams currently customizing. This bar brings product
engineers into a DW solution, when clicking on it. This web-based DW solution
permits product teams to have an overview on how much are other product
customizing the features their product is reusing. Finally, the DW solution acts
as a 3-way comparison&merging enactor, that permits product teams to compare
their product’s code with other products’ code, for a given feature, and merge them
if wanted. This cross-product peering and reuse lessens the deviations between
products, and as consequence, would lessens the conflict occurrence during the
pruning phase for domain engineers. Hence, this Thesis proposes the use of
both WA, DW, and 3-way comparison techniques during the grow phase, so that
SPL engineers can effectively conduct “implement change” step during the prune
phase.

Although, code peering encourages easy pruning, this might be an ancillary
activity from an AE perspective, as for them, product development comes
first. This has a main implication: code peering should “respect the focus” of
application engineers, i.e. do not interrupt product development. Additionally,
support for code peering needs to satisfy compatibility requirements, i.e. the
extent to which the enhancement is aligned to previous user experiences [and82].

16

Chapter 1. Introduction

In our case, this experience refers to the usage of Github. Hence, the solution
should be compatible with Github way of working. On this grounds, we
believe that WAs techniques are good means for enhancing web-based Version
Control System (VCS) tools for code peering, without compromising application
engineers’ focus on product development.

Next Section lists the set of research questions (RQs) addressed in this Thesis.

1.5.4 Research questions
This Thesis elaborates around three main research questions:

RQ1: How is the grow phase conducted in practice?

By investigating this RQ we aim at making explicit who, when and how do
stakeholders participate during the grow phase. Although the grow-and-prune
model is being referred to in the literature, the nitty-gritty details have seldom
been reported.

RQ2: What are the characteristics of the merge problem in SPLs? And, how can
we lessen the merge problem in SPLs?

By investigating this RQ we aim at identifying the characteristics that turn the
pruning phase into a merge problem, and a possible way to lessen this.

1.5.5 Contributions
This Thesis aims at contributing to the previous research questions as follows:

RQ1. Description of the roles and interactions that intermingle in a grow-and-
prune approach to SPLs, motivated by the Danfoss case.

RQ2. Characterization of the merge problem and how it differs from the merge
problem that also appears in traditional single-system development. We
propose a new practice, code peering, as a possible way to alleviate it.
This begs the question whether it is worth diverting product developers’
attention for the sake of making easier the subsequent pruning by domain
engineers. Using the theory of Attention Investment [Bla02] as a narrative,
we introduce four design principles that drive how code peering can be
introduced for SPL development.

17

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

RQ2. A realization of these principles using GitHub as the VCSs, and
pure::variants as the SPL framework. As a proof-of-concept we developed
PeeringHub, a tool that supports code peering through: (1) a Chrome
extension that enhances GitHub with peering bars that provide brief
information about what features are other peers changing, (2) a web-
based application that provides alluvial-based high-level visualizations
indicating the features available for code peering, and (3) feature-based 3-
way comparisons so that product engineers can analyze how a given product
is changing the code of a given feature w.r.t its own.

1.6 Problem statement for “implement”:
synchronizing core-assets and products

1.6.1 Context & definitions

Enacting the pruning stage requires propagating changes between core-assets
and products, so that both parties are synchronized. This introduces two sync
operations: the update propagation (from Domain Eng. to Application Eng.),
and the feedback propagation (from Application Eng. to Domain Eng.) [Kru03]:

Feedback propagation is the process that serves for: extending the scope of
the product line to emerging application engineering requirements [Kru03],
as well as, incorporating bug-fixes resolved in products [FSK+16]. The
integration of these changes into the core-asset base may require updates to
be applied to already existing products [Kru03].

Update propagation is the process that serves for: configuration repair
(synchronize products configuration when variability model changes)
[BM14], as well as, product upgrade (where latest versions of reusable
assets are propagated to products) [Kru03]. In the latter case, for
every product derived from the original core-asset, an update operation
is required. If products have customized the core-asset then, the update
operation may require a manual merge for each product [Kru03]. When
to conduct the upgrade differs significantly for the different products in the
SPL. While some tend to upgrade rather quickly, some do not upgrade for a
long time, even when not close to the product’s release [JB09].

18

Chapter 1. Introduction

Figure 1.6: Mind map depicting the root-cause analysis for propagating
changes between core-assets and products. Interact with it online at
https://tinyurl.com/ya777m2x.

In order to preserve a correct, complete and consistent synchronization between
core-assets and products, Software Configuration Management (SCM) for SPL
development needs to account also for these propagations. SCM is the discipline
that enables engineers to keep control and track software changes (i.e. evolution).
Product line SCM must support [CN01a]: (1) the derivation process of a
product from the core-asset base, (2) update propagation process, (3) feedback
propagation process. In a nutshell, SCM fulfill these requirements by relying on
both (1) tools to track changes to software assets, i.e. Version Control Systems
(VCSs), as well as, on (2) policies for engineers that establish when and how to
branch, merge, and commit code (captured as branching models). However, the
state of-the-art tools and practices are not tailored to SPL specifics, and this causes
update and feedback propagations to be time-consuming and error-prone.

The next Section delves deeper into the problem and its root-cause analysis.

19

https://tinyurl.com/ya777m2x

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

1.6.2 Root-cause analysis
Figure 1.6 depicts the root-cause analysis as a mind map. The reader is
encouraged to interact with the mind map at https://tinyurl.com/ya777m2x. The
nodes can be unfolded to uncover the supporting evidences for each of the claims.

Problem statement

• Both feedback propagation and update propagation are time-consuming and
error-prone.

Causes

• VCSs not tuned for SPL specific operations. VCSs are mainly thought
for single-systems, and hence, they do not support product derivation, nor
the update and feedback propagation paths required for SPL development
[Ana13, TMN08, vGB02]. State-of-the-art VCSs, such as Git/GitHub,
provide the basics but fall short in supporting sync operations between
separated VCS repositories (e.g. a CoreAsset repository and a Product
repository). All GitHub offers is the fork link to create a clone of a
repository. However, forking (i.e. cloning) is not how products are derived.
Indeed, products are built from a subset of core-assets while forking would
entail copying the entire CoreAsset repository. Likewise, GitHub’s pull
request is also thought for synchronizing a whole repository, hence lacking
a more piecemeal synchronization, i.e. at feature level. The same reasoning
applies if product derivation is equated to branching instead as to forking.
This lack of adequacy forces engineers to rely on workarounds, which are
time-consuming and error-prone.

• Lack of guidelines for branching and merging. While VCSs are tools that
track software development, branching and merging policies provide rules
to support the efficient synchronization of software development efforts.
These rules are captured in the form of branching models. Extensive
literature exists on branching models for single-system development, e.g.
[ABCO98, WS02b, PSW11, Gitb]. In the case of SPLs, little details are
given about how this is exactly done. This is unfortunate since the adequacy
of branching models very much depends on the processes to be supported.
Indeed, industrial experiences have reported how the lack of stablished

20

https://tinyurl.com/ya777m2x

Chapter 1. Introduction

branching and merging policies prevented engineers from synchronizing
their developments, causing inefficiencies [NNK16][JB09].

• Large number of products and core-assets. When a core-asset is
upgraded, existing products might need to get this upgrade. If products
have customized the core-asset then, the update operation may require a
manual merge [Kru03]. Since products reuse only a sub-set of the core-
asset base, engineers would need to elucidate only the newer versions of the
core-assets that the product is reusing need to be propagated. Hence, the
process of syncing core-assets and products requires a big effort for SPLs
that account for hundreds of core-assets and products.

• Conflicting changes between DE & AE. Syncing changes between core-
assets and products can be a very time-consuming and error-prone process
if the newer versions of core-assets conflicts with product customization.
The longer both parties wait to sync, the greater the chance for conflicting
changes. The appropriate time to conduct the upgrade differs significantly
for the different products in the SPL. While some tend to upgrade rather
quickly, some do not upgrade for a long time, even when not close to
the product’s release [JB09]. This risks synchronizations to be further
postponed, which higher the change for conflicting changes, and for a time-
consuming and error-prone integration process.

Consequences

• Productivity drop and higher time-to-market. If core-assets and products
are not synchronized, products would not get the latest available bug-fixes
and new functionalities [JB09]. Hence, products would need to develop
these themselves, which makes application engineers less productive, and
causes a higher time-to-market of products.

• Reuse decay. The less synchronized the products are with the core-assets,
the more the products deviate from the core-asset base. This means that
products would less frequently want to reuse assets from the core-asset base,
as the updates would require more and more integration effort. The longer
the update delay, the higher the amount of newly available updates, and the
higher the conflicts between DE and AE developments. This risks the SPL
to a reuse decay. Unless products are in sync with latest available updates,

21

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

products will start clone-and-own outside the SPL and in the second case
do not upgrade [JB09].

How can we help on the problem of “both feedback propagation and update
propagation are time-consuming and error-prone”?Next Section provides the
design problem along Wieringa’s template.

1.6.3 Design Problem
Our design problem formulated along the lines of Wieringa’s template [Wie14] is
as follows:

Improve update propagation and feedback propagation

by using Web Augmentation techniques to enhance Github to SPL
practices

that satisfy compatibility

so that SPL engineers can effectively conduct the “implement” step
during SPL evolution

This template reads as follows. The context to be improved would be “update
and feedback propagation process”, and the goal to achieve would be for SPL
engineers to effectively conduct the “implement” step during SPL evolution, i.e.
synchronizing core-assets and products. To this end, we advocate for enhancing
VCS tools by means of Web Augmentation (WA) techniques. Specifically, we
leverage Github and extend its functionality with operations though for SPLs
(i.e. product derivation, and update&feedback propagation). However, this
enhancement, needs to satisfy compatibility requirements. Compatibility refers
to the extent to which the enhancement is aligned to previous user experiences
[and82]. In our case, this experience refers to the usage of Github. Hence, the
solution should be compatible with Github way of working.

On this grounds, we believe WAs techniques are good means for enhancing
web-based VCS tools for SPL specifics. Next Section lists the set of research
questions (RQs) addressed in this Thesis.

1.6.4 Research questions
This Thesis elaborates around two main research questions:

22

Chapter 1. Introduction

RQ1: How can products and core-assets be arranged in VCSs (e.g. Git), and how
does the branching model look like?

By investigating this RQ we aim at elucidating how core-assets and products,
which are developed at different paces and by different teams, can be arranged
under VCS repositories.

RQ2: How can VCSs’ front-ends (e.g. Github) help on synchronizing core-assets
and products?

By investigating this RQ we aim at providing synchronization operations as first
class constructs using VCS basic operations (i.e. commit, branch and merge).

1.6.5 Contributions
This Thesis aims at contributing to the previous research questions as follows:

RQ1. We propose a VCS repository architecture, which distinguishes between
the CoreAsset repository, where domain engineering takes place, and
Product repositories, where product engineering occurs. We additionally
provide branching models for each repository in which sync actions operate.

RQ2. We elaborate on the operational semantics for sync actions. The previous
branching model permits sync operations to be expressed in terms of basic
VCS constructs. This in turn implies that eventual mismatches that rise
during synchronization are resolved à la VCS, i.e. highlighting diff -erence
between distinct versions of the same artifact (traditionally, using the diff
option in VCSs). Therefore, we do not aim at automatic sync. Our aim is
much more humble: tap into VCS popular mechanisms for SPL engineers to
achieve sync in a way similar to what they do for single products. However,
this results in a conceptual gap between how sync paths are conceived, and
how they are realized down into branching and merging. To close this gap,
we propose leveraging VCSs with SPL sync operations.

RQ2. As a proof-of-concept, we developed GitLine, a browser extension for
Firefox, that extends GitHub with SPL sync operations. Through a single
click, product engineers can now (1) generate Product repositories from
a CoreAsset repository, along a certain feature configuration, (2) update
propagations of newer core-asset versions, or (3), feedback propagation of
product customizations.

23

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure 1.7: Design Science Research (DSR) Cycles (taken from [Hev07]).
1.7 Research Methodology: Design Science

Research
In this Thesis we followed Design Science Research (DSR). DSR is the scientific
study and creation of artefacts as they are developed and used by people with the
goal of solving practical problems of general interest [JP14]. Thus, design science
is one approach to investigating artefacts.

DSR takes a problem solving instance, starting from problems experienced
by people in practice, and then tries to solve them. It does so by creating,
positioning, and repurposing artefacts that can function as solutions to the
problems. The key differentiator between routine design and design research
is the clear identification of a contribution to the archival knowledge base of
foundations and methodologies. Design science is viewed mainly from an IT
and information systems perspective. However, the principles underlying design
science are applicable to many other areas [JP14].

Hevner [Hev07] proposes a three cycle process for DSR (see is Figure 1.7).

• The Relevance Cycle initiates the DSR by identifying and analyzing
problems to be addressed in an context. The problem must be precisely
formulated and justified by showing it’s relevant within the context. The
problem has to be of general interest and remarking causes to the problem
might be identified and analyzed. Herein, the root-cause analysis provides
a way to methodically identify the root causes of a problem. While the

24

Chapter 1. Introduction

consequences of a problem illustrate the importance of the problem, the
causes of the problem are the targets to be corrected/attacked for preventing
the problem recurrence. The relevance cycle does not only provide the
problems to be addressed, but also defines acceptance criteria for the
ultimate evaluation of the research result, i.e. the requirements to be
addressed by the solution in order to solve the problem.

• The Design Cycle is the heart of any design science research project.
This cycle of research iterates between two main activities. First, the
design and construction of an artifact that solves the problem by meeting
the requirements identified in “The Relevance Cycle”. And second, the
evaluation of the artifact. The feedback obtained from the evaluations can
make the artifact to be further refined.

• The Rigor Cycle connects the design science activities with the knowledge
base of scientific foundations, experience, and expertise that informs the
research project. The rigor cycle provides past knowledge to the research
project to ensure its innovation. It is contingent on the researchers to
thoroughly research and reference the knowledge base in order to guarantee
that the designs produced are research contributions and not routine designs
based upon the application of well-known processes [HMPR04].

This dissertation has been developed along the DSR hallmarks.

• As for the relevance cycle, we identified two problems in the context of
evolving SPLs following the grow-and-prune model. Following a root-
cause analysis, we analyzed the causes that lead to the problem, as well
as, the consequences that they could generate. For each of the identified
problems, we additionally identified the requirements that needed to be
addressed in order to solve the issue.

• As for the design cycle, we designed and build two artifacts, CustomDIFF
and GitLine, targeting each of the identified problem. Due to the difficulties
in finding a company both willing to share its SPL set-up and letting us to
evaluate these artefacts, only the former artefact has been evaluated into an
industrial context.

• With respect to the rigor cycle, we have both nurture from the knowledge
base, as well as, we have contribute to it. We achieved rigor by positioning
our research in the context of evolving SPLs by the grow-and-prune model,

25

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Introduction Mapping SPL
evolution

Chap
1

Chap
2

Analyzing
product

customization

Chap
3

Peering into
peers

Chap
4

Synchronizing
core-assets and

products

Chap
5

Conclusions

Chap
6

Papers on SPL
evolution

categorized

Appx
A ETL process at

CustomDIFF

Appx
B

A brief on Git

Appx
C

The Appendix

Figure 1.8: Chapter map.

and by applying existing foundations and best practices when designing and
building both artifacts.

We believe to have contributed to the SPL knowledge through:

1. a mapping on SPL evolution literature,

2. a DW approach to customizations analysis: requirements & artifact (i.e.
CustomDIFF)

3. a new practice, included into the application engineering process, that can
help alleviating the merge problem in SPLs (i.e. code peering)

4. a repository branching model for SPLs and their operations counterpart for
keeping both core-assets and products synchronized.

1.8 Outline
This section outlines the content of the Thesis. Figure 1.8 illustrates the chapters
of this dissertation. Below, a summary of each chapter in this dissertation is
provided.

26

Chapter 1. Introduction

Chapter 2. This Chapter presents a Systematic Mapping Study (SMS) on
SPL evolution. It provides the reader with a background on SPLs, and maps
the existing research on SPL evolution along four facets: evolution activity
(e.g., identify, analyze and plan, implement), product-derivation approach (e.g.,
annotation-based, composition-based), research type (e.g., solution, experience,
evaluation), and asset type (i.e., variability model, SPL architecture, code assets
and products). The chapter ends with the identification of the two issues that this
Thesis investigates.

Chapter 3. This chapter introduces the practice of customization analysis, i.e.
the practice by which SPL engineers analyze how products have customized
the core-assets after being derived from the SPL. In this chapter we propose
the use of data-warehouse techniques for customization analysis. Requirement
Analysis, Dimensional Modeling and Reporting Tools are discussed, that end up
in CustomDIFF, a data warehouse tool that uses Git as the operational system and
pure::variants as the SPL framework. This work has been motivated and validated
in the context of Danfoss Drives, a SPLC-awarded hall-of-fame company.

Chapter 4. This chapter introduces the merge problem that arises during the
pruning phase, i.e. when disparate product customizations are merged into the
core-asset base resulting in a multitude of conflicts, whose time to be resolved
exceed the time it took to make the original changes. In this chapter, we propose
code peering practice, intended to promote early reuse across product teams
during the grow phase, with the aim of lessening the subsequent merge problem.
We introduce four design principles that drive how code peering can be introduced
for SPL development. We present a realization of these principles, PeeringHub,
that works for Git/GitHub, and SPLs developed with pure::variants.

Chapter 5. This chapter introduces the practice of synchronization between
core-assets and products. In this chapter we propose the use of Version Control
Systems (VCSs) to aid on such synchronization using using traditional VCS
constructs (i.e. merge, branch, fork and pull). We discuss implications for
branching models for SPL development, and provide sync operations as a first-
class constructs. We present a browser extension, GitLine, that extends GitHub
with sync operations for SPLs.

27

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Chapter 6. This chapter concludes the Thesis by remarking main results, listing
the publications that endorse this Thesis, enumerating the limitations of the
current solutions, and suggesting possible future work.

Appendix A. This Appendix serves chapter 2. It provides the full list of the
papers that were included in the SMS, as well as, their categorization.

Appendix B. This appendix serves chapter 3. It provides the algorithms for the
Extract Transform and Load (ETL) process followed in CustomDIFF.

Appendix C. This appendix serves chapter 5 mainly, although it may be of
interest for chapter 3 and chapter 4 too. It provides the reader with a brief on git,
its basic operations, and points to popular branching models for the development
of single-systems.

1.9 Conclusion
The intention of this chapter was to give an overview of the contents of this
dissertation. We introduced the context that frames this Thesis, as well as, we
defined the problems that it tries to solve. The contributions to these problems
were also listed. Finally, the research methodology followed in this Thesis was
briefly introduced.

The next chapter provides a mapping study on SPL evolution.

28

Chapter 2

Mapping Software Product Line
Evolution

2.1 Overview
This Chapter1 presents a Systematic Mapping Study (SMS) that maps the existing
research on the area of SPL evolution. Note, that in the context of this Thesis SPL
evolution is achieved by co-evolving both core-assets and products. However, this
might well not be the case for other research efforts, that address solutions for
SPLs at other reuse levels (e.g. SPLs that do not consider products to evolve).
Hence, this SMS maps studies on the area of SPL evolution, idenpendently of the
SPL maturity level the study is addressing.

This Chapter provides the reader with a brief background on SPLs, and
describes the characteristics that makes SPL evolution challenging. More
importantly, the existing research on SPL evolution is mapped along main
four facets: evolution activity (e.g., identify, analyze and plan, implement,
verify), product-derivation approach (e.g., annotation-based, composition-based),
research type (e.g., solution, experience, evaluation), and asset type (i.e.,
variability model, SPL architecture, code assets and products). Analyses of
the results indicate that "Solution proposals" are the most common type of
contribution (31 %). However, few studies do address solutions for co-evolving
core-assets and products. The Chapter ends with the identification of the two
issues that this Thesis investigates.

Next we introduce the motivations and research questions behind the SMS.

1The content of this Chapter has been previously published in [MD16]

29

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

2.2 Introduction
As the SPL domain matures, evolution concerns come into play [Bos02,
DNGR08]. Unfortunately, the term “evolution” has long been recognized as being
overloaded with diverse matters [BR00]. For the purpose of this work, “evolution”
refers to the adaptation of the SPL as a result of changing SPL requirements. From
this perspective, evolution is triggered by requirement changes, and not so much
by refactoring. Evolution happens as a result of SPLs moving from adoption to
maturity. In their infancy, SPLs strive to fix defects. At adulthood, SPLs might
have less defects, but their wider customer base more likely increases the chances
for new functionality requests.Indeed, SPLs’ long life-span makes evolution a
top priority, yet far from being fully resolved [BP14]. SPL characteristics that
make evolution specially challenging include: (1) separation of development into
Domain Engineering (DE) and Application Engineering (AE), (2) existence of
assets of different types of variability and abstraction, and (3), high number of
interrelations between assets [Mcg03, AK08, DSB05]. One of the first works
(conceptually) addressing evolution in SPLs is [SB99]. Svahnberg et al. analyze
the life-span of two industrial SPLs, and classified SPL evolution according
to common scenarios that arose during evolution (“requirement evolution”,
“architecture evolution”, and “component evolution”). Thereafter, few efforts
have been made to gather studies addressing this issue. Two exceptions are
[BP14, Mcg03]. The most referenced work is McGregor’s one who introduces
basic evolution concepts and discusses practices that initiate, anticipate, control,
and direct the evolution of SPL assets [Mcg03]. Botterweck et al. [BP14] present
the most recent summary on the topic. Authors provide an overview on three
main issues: migration to SPLs, planning SPL evolution, and implementation of
SPL evolution. However, none of the previous works systematically review the
existing literature, and thus, they do not provide coverage of the different topics.

A systematic mapping study is an evidence-based approach where existing
works can be categorized, often giving a visual map of its results [KC07,
PFMM08a]. This work presents the outcome of such approach conducted for
the literature on SPL evolution available up to July, 2015 which resulted in 107
primary studies. The overall research questions follow:

RQ1: What types of research have been reported, to what extent, and
how is coverage evolving?

RQ2: Which product-derivation approach received most coverage,
and how is coverage evolving?

30

Chapter 2. Mapping Software Product Line Evolution

RQ3: Which kind of SPL asset received more attention, and how is
attention evolving?

RQ4: Which activities of the evolution life-cycle received most
coverage, and how is this coverage evolving?

Answering RQ1 would allow us to assess maturity within the field, e.g., if research
is limited to solution proposals or rather it takes a step forward and conducts some
kind of validation, or even better, it evaluates the solution in industry. On the other
hand, RQ2 would allow us to assess how SPL product derivation approaches are
catching on. Next, RQ3 looks at “the subject” of evolution, i.e., the SPL asset
being subject to change. This includes the variability model, the SPL architecture,
code assets or SPL’s products. Conversely, RQ4 looks at “the verb” of evolution,
i.e., which evolution tasks authors have focused on (e.g. identify change, analyze
change, implement change, verify change). In summary, the outcome of this study
might help to identify trends, hotspots and gaps both in terms of “the verb” and
“the subject” of SPL evolution. Also, a brief is provided for each of the 107
primary studies. Special effort is dedicated to arrange these studies within a fine-
grained schema that might help newcomers to better pinpoint the area of interest.

The remainder of this Chapter is organized as follows. Section 2.3 provides
an overview on SPLs, highlights what makes SPL evolution challenging, and
points to previous mapping studies in the SPL field. Section 2.4 describes the
systematic methodology used to conduct this mapping study. Section 2.5 provides
an annotated bibliography that serves to map primary studies into a finer-grained
classification of the evolution activities. Section 2.6 analyses the results of the
mapping, and answers the RQs. Conclusions end the Chapter.

2.3 Background
This section provides an overview on SPLs, highlights what makes SPL evolution
challenging, and points to previous mapping studies in the SPL field.

2.3.1 A brief on SPLs
SPLs aim to support the development of a whole family of software products
through systematic reuse of shared assets [CN01a]. These assets give support
to different stages of the SPL production process. The asset list includes
variability models (i.e., allowed variants to be exhibited by the SPL products,

31

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

common variable product -specific

Legend

make
common

make
variable

make
specific

make
generic

modify
commonality

modify
variability

product-local
change

Impact on all products

Impact on individual products

Impact on multiple products

Domain
Engineering

Application
Engineering

Figure 2.1: Types of changes (based on [BP14, Kla08]).
a.k.a. features), architecture (i.e., high-level description of the main modules
involved and their connections), software components, class libraries, code
snippets or at a higher description level, models as in model-driven SPLs. It
might also include requirement documents, plans, test cases, process descriptions,
product configurations, and trace documents. These assets are handled along
two interrelated processes. During Domain Engineering (DE), the scope and
variability of the SPL are defined, and reusable assets are developed. During
Application Engineering (AE), products are derived using these assets by
resolving variability [PBvdL05b]. Hence, variability management is an SPL
hallmark. SPL assets can be of different variabilities: common assets are present
in all products, variable assets are present in some products, and product-specific
assets are local to individual products.

As any other software, SPLs are subject to evolution [DSB05]. Specifically,
we conceive evolution as adaptation of the SPL to cope with changing
requirements. This might happen in two different scenarios:

• during product derivation, new requirements emerge (a.k.a. reactive
evolution). These requirements can be accounted for in two different places:
within the product realm or within the core-asset realm. The former implies
the creation of product specific artifacts. Application engineers can use
the core-assets as basis for further development, or they can develop new
assets from scratch. Second option is within the core-asset realm. Here,

32

Chapter 2. Mapping Software Product Line Evolution

requirements are tackled by domain engineers, and additions can benefit
products other than the one generating the change.

• at any time, SPL engineers must be able to anticipate future needs (a.k.a.
proactive evolution). This might lead to adapt core-assets in such a way that
the SPL is capable of accommodating the needs of product stakeholders in
the shortest amount of time.

Previous scenarios involve SPL changes. Figure 2.1 depicts the main types
of changes along the lines of those proposed in [BP14, Kla08]. Common
functionality can be made variable if it should be excluded from some products.
Usually, this requires changing the implementation (to make it variable) which
then affects all existing products. Conversely, making a variable asset common,
influences at least those products that did not contain the asset before. Making a
variable asset product-specific, or a product-specific asset generic, requires also
to adapt individual products to hold or unhold the asset, respectively.

The bottom line is that SPL assets might be moved along “the variability
spectrum”: common, variable and product-specific. Common assets are present
in all products, variable assets are present in some products, and product-specific
assets are local to individual products. Moving along this spectrum is not
straightforward due to SPL specifics, namely:

• Large number of asset inter-dependencies. The distinction between
DE and AE introduces dependencies between products and the reusable
assets used in their production. DE and AE have their own life-cycles and
priorities. The urgency in releasing a product, fixing a bug, providing a new
product release, or delivering a new feature may vary depending on whether
the stakeholder is involved in DE or AE. Nevertheless, both parties need to
be in sync to avoid SPL erosion [DSB05].

• Broad scope. SPLs aim to build a family of products. Hence, the volume
and likelihood of asset coupling is potentially larger than if the focus were
on a single product.

• Large life-span. SPLs are long-term investments. This lengthy life-span
should encourage a more effective control over SPL evolution in order to
avoid SPL decay [vGB02].

A final remark. Terminology was particularly elusive in this study. In the
SPL literature, the term “evolution” can denote a broad range of concerns:

33

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

migrating legacy systems into SPLs (e.g.,[LC13]), refactoring (e.g.,[LC13]) or
bug-fixing (e.g., [RB08, SLB13]), to name a few. This is not specific of
the SPL literature but it has long been recognized for software engineering
in general [BR00]. The term “maintenance” tends to be predominantly used
to describe activities aiming at preventing software from failing to deliver the
intended functionalities. In the same vein, SEBOK defines maintainability as
"the probability that a system or system elements can be repaired in a defined
environment within a specified period of time" [SEB]. It can be noticed a
bias towards the use of the term maintenance in relation with "failure" and
"repair". From this perspective, maintenance predominantly aims at preserving
functionality. By contrast, we conceive “evolution” not so much as a repairing
action, but as an enhancement in the system’s capabilities. Here, stakeholders
(rather than bugs) tend to be the main triggers of evolution. This distinction
is aligned with the way software modifications are classified by Kitchenham et
al. [KTvM+99]. Rather than using Swanson’s classification of maintenance
activities based on intention (i.e., corrective, adaptive, and perfective) [Swa76],
Kitchenham et al. propose to categorize the modifications in terms of activities
performed: activities to make corrections (i.e., existence of discrepancies between
the expected behavior of a system and the actual behavior) versus activities to
make enhancements (i.e., existence of desires to somehow change the current
behavior of the system). For the purpose of this work, we use the term
“evolution” to denote these enhancement activities, would these be modifying
the scope, the commonality, the variability or the products of an SPL. We
then leave out activities such as SPL migration ([BLL08, LC13]), SPL bad-
smell detection ([ANS+04, GpKL14, LP07, BGvS10, PPF+14, VFAC14]), SPL
refactoring ([ACA08, AGM+06, RB08, STKS12, SLB13]) or SPL bug fixing
([KSLG11, KSL+13]). At adulthood, SPL is exposed to a wider customer base
and hence, the pressure for new functionality increases. As pointed out by
Singer, “a corrective activity may require only the ability to locate faulty code and
make localized changes, whereas an enhancement activity may require a broad
understanding of a large part of the product” [Sin98]. Our research questions are
headed for assessing the types and coverage of these “enhancement activities”.

34

Chapter 2. Mapping Software Product Line Evolution

Ref. Year Topic Research Questions

[MAI12] 2012
Quality
attribute

What quality attributes have been proposed for assessing
the quality of software product lines?

What measures have been proposed for assessing the
quality of software product lines and how are they used?

[LC13] 2013 Migration
What approaches have been proposed on SPL oriented

evolution and what is their focus and origin?
Which challenges for SPL oriented evolution have been

identified?

[LBd+13] 2013
Risk
management

Which risk management steps are suggested by the
approaches?

Which risks were identified and reported in SPLs?
Which risk management activities and practices are

adopted by the SPL approaches?
What do the researchers commonly use to evaluate the

identified risks?
How do the stakeholders influence the identified risks?

[PCF14] 2014
Management
tools

How many SPL management tools have been cited in the
literature since 2000?

What are the main characteristics of the tools?
What are the main functionalities of the tools?

[SdOdA15] 2015
Consistency
checking

What kind of consistency checking activities have been
performed in the literature?

Can any trend on consistency checking be recognized in
the research field?

How do the existing approaches relate to each other?

[HPMFA+15]2015

Bibliometric
analysis
of SPL
research

What are the most influential papers on SPL literature?
Who are the most prolific authors?

What journals, conferences, etc. have published the
majority of the papers?

How numerous is the SPL literature? How has paper
publication been distributed over time?

What are the main topics studied in the area? How has the
interest in those topics evolved with time?

What are the most impacting papers for a given topic
along a certain period of time?

Table 2.1: Related mapping studies.

35

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

2.3.2 Related mapping studies
We conducted a Scopus2 search for mapping studies in SPLs published from 2010.
The following search string was used:

("software product line" OR “SPL”) AND ("systematic literature
review" OR “systematic review” OR “research review” OR
“systematic overview” OR “mapping study”)

We identified six relevant papers that overlap with our interests (see Table 2.1).
For quality attributes in SPLs, Montagud et al. [MAI12] found 165 measures
proposed in the literature. This figure is broken down along the SPL life-cycle
phase in which the measures are applied: Requirements (9%), Design (67%),
Realization (4%), Testing (3%), Application domain phase (7%), and, most
important here, the Evolution stage (10%). The latter is based on the insights
of a single paper: [AD07].

Laguna et al. [LC13] address the reengineering of legacy systems into
SPLs. Here, the term evolution is understood as the effect of migrating a set
of related products, probably created by clone-and-own operation, into an SPL
where reusable assets are obtained by refactoring existing products. Our focus
is not so much in how SPLs are created by reengineering existing products, but
SPLs’ assets evolution. Indeed, studies of Laguna et al. present no overlap with
our primary studies. Though refactoring is certainly a trigger for evolution, we
are more interested in how SPL engineers accommodate new functionality. This,
makes Risk Management (RM) a topic of special interest. The mapping study
conducted by Lobato et al. [LBd+13] identifies RM activities and practices in
SPLs. Some practices tackle the evolution of SPLs. For instance, the practice
SPL variability acknowledges that “the product variability must be considered
when evolving the architecture”. However, SPL evolution does not appear as a
first-class activity but is scattered among other steps (e.g., SPL management, SPL
variability, SPL testing, etc). By contrast, we move SPL evolution to the forefront,
aiming to provide a broader overview of the different aspects involved, not limited
to RM. Nevertheless, all the references concerning evolution were also included
in our study.

Pereira et al. [PCF14] focus on SPL management tools. A classification facet
is about the functionality cluster supported by the tool: Planning (i.e. means for
collecting the data needed to define domain scope), Modeling (i.e. means for

2http://www.scopus.com/

36

http://www.scopus.com/

Chapter 2. Mapping Software Product Line Evolution

represents the domain scope), Validation (i.e. means for validating the domain),
Product configuration (i.e. means for product derivation) and Import/Export
facilities. The outcome provides the following distribution: Planning (34%),
Modeling (85% of the tools support at least four of the functionalities), Validation
(49% support at least three of the functionalities), Product configuration (83%)
and Import/Export (71%). However, evolution as such is not explicitly considered
but blurred behind other notions, mainly the Validation cluster which comprises
functions for the inclusion of new requirements. It is not clear the extend to which
tools give support to the evolution life-cycle (see later).

For consistency checking, Santos et al. [SdOdA15] undertook a mapping
study for 24 primary studies. This work is certainly of interest for SPL
evolution. Indeed, consistency checking aims at assuring that all SPL assets
remain consistent with each other after some changes have been introduced:
model against source code (25%), model against model (33%), or model against
specifications (42%), where rates are those provided by this study. Our work
extends beyond consistency checking to include other activities of the change life-
cycle [YCM93]: identify change, analyze and plan change, implement change or
verify change.

Finally, Heradio et al. [HPMFA+15] perform the broadest mapping study
on SPL research. Authors analyzed 20 years of the SPL literature (from 1995
to 2014), which involved above 2800 primary studies. Authors, resort to
bibliometric analyses to: (1) identify the most influential publications on the SPL
literature (based on received citations), (2) detect the most covered SPL “research
topics” (in terms of published papers), and (3), determine how the interest in
these research topics evolved over time. Main research topics are: software
architecture, automated analysis, feature modeling, software reuse, variability
management, software quality, product derivation, domain engineering, and
software design. Regarding the evolution over time, authors ascertain that: (1)
software architecture was the initial motor of research in SPLs; (2) work on
software reuse has been essential for the development of the SPL research;
and (3) feature modeling has been the most important topic for the last fifteen
years, having the best evolution behavior in terms of number of published papers
and received citations. From our perspective, it is worth highlighting that SPL
evolution does not appear as a first-class topic, but included as part of software
reuse and software design.

These studies can be considered good sources of information on their subjects.
Yet, SPL evolution tends to be blurred behind other notions (e.g. migration, risk
management, consistency checking, etc.). We aim at moving SPL evolution at the

37

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Phase 1: Planning the review

Phase 2: Study identification Phase 3: Data extraction and classification

Legend

Protocol
definition

Literature
survey

Research
questions
definition

Outcome

Process step

Conducting
search

Filtering
studies

Topics
keywording

Data
extraction

and mapping

Protocol and
data collection

form
Set the
grounds

Review
scope

All studies Preliminary
primary studies

Classification
schema

Systematic
map

Evaluate
search

Primary
studies

Figure 2.2: Systematic Mapping Study process (adapted from [PFMM08a]).
forefront by providing a deeper analysis along the lines of the change mini-cycle
stages [YCM93].

2.4 Method
A Systematic Mapping Study (SMS) is an evidence-based form of secondary
study. It provides a wide overview of a research area, to establish if research
evidence exists on a topic, and provides an indication of the quantity of the
evidence [KC07]. SMSs offer multiple benefits [BTBK08]. First, SMSs
identify gaps and clusters of papers based on frequently occurring themes,
using a systematic and objective procedure. Second, SMSs help plan new
research, avoiding effort duplication. Third, they identify areas suitable for future
systematic literature reviews (SLRs), a more in-depth form of secondary studies
with a focus on smaller research areas and more concrete research questions
compared to SMSs. The software engineering community is working towards
the definition of a standard processes for conducting SMSs. Guidelines and
procedures for undertaking SMSs are defined in [BTBK08, PFMM08a, PVK15].
Similar to other studies (e.g., [dCM+11] and [TGAS14]), we split the process
proposed by Petersen’s. [PFMM08b] into three main phases (see Figure 2.2):

• planning the review, where the need for the review, appraisal of related

38

Chapter 2. Mapping Software Product Line Evolution

literature surveys and research questions are set. Similar to other SMSs
[dCM+11, TGAS14], we complement Petersen’s. approach with a protocol
definition process and the data collection form as suggested by Kitchenham
et al. [KC07],

• study identification, where relevant papers are identified. First, a set of
initial papers are identified by querying digital databases. Then, these
studies are filtered based on inclusion/exclusion criteria, yielding primary
studies.

• data extraction and classification, where primary studies are analyzed to
derive the classification schema, and studies are classified under the schema.

Next subsections provide the details.

2.4.1 Phase 1: Planning the review
This section introduces the directives for planning our SMS, along Kitchenham’s
guidelines [KC07]. This step iterates along three activities: protocol definition,
literature survey and research question definition (see Figure 2.2-“Phase 1”).
We analyzed literature surveys on SPL evolution whose outcome is presented in
Section 2.3. As for the research questions, we point readers to the introduction,
where the objective of research questions RQ1, RQ2, RQ3 and RQ4 is set. Hence,
this section focuses on the protocol definition.

2.4.1.1 Protocol definition

This includes the need, the topic and the scope of the review, the preliminary
research questions, a preliminary search strategy, selection criteria, and a data
extraction form [KC07]. We reviewed and updated the protocol in several
iterations throughout the entire SMS process.

The need for the review. This SMS is motivated by the perceived need to
systematically map out efforts made on SPL evolution. Thus, the outcomes of
this study can identify the trends, hotspots and gaps which need attention from
the community. Moreover, leading venues to publish results (and read literature)
on SPL evolution can be identified. In addition, researchers and practitioners can
check if there is a growing or decreasing interest on SPL evolution. An overview
of the field and its distinctive concerns is given at the beginning of this work
(Sections 2.2 and 2.3).

39

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Preliminary research questions. The goal of this study was to obtain a
comprehensive overview of current research on SPL evolution.

The search strategy. The search strategy must lead to inclusion of relevant
papers and exclusion of irrelevant papers. We set initial search strategy to include
querying digital databases with customized search strings, followed by manual
filtering of the resulting studies by predefined inclusion and exclusion criteria. To
avoid replication, we detail this process later in Section 2.4.2.

Inclusion and exclusion criteria. For filtering the papers, we formulated
inclusion and exclusion criteria. The inclusion criteria are:

• IC1. The study focuses on SPLs as opposed to peripherally addressing the
topic.

• IC2. The study focuses on SPL evolution as such. Migration from single
product to an SPL approach, refactoring, bad-smells and bug-fixing are not
considered (as addressed in Section 2.3).

• IC3. The study is peer-reviewed.

Next, the exclusion criteria are:

• EC1. The study is not SPL-centric.

• EC2. The study does not address evolution.

• EC3. The study is in a language other than English.

• EC4. The study is gray literature, extended abstract, tutorial, tool demo, or
doctoral symposium paper.

• EC5. The study is a delta of another study in the review.

Data extraction form. Its main purpose is to help researchers in collecting all
the information needed to answer the research questions, recording rationales for
inclusion and exclusion of the studies, and classifying each of the studies along
the classification schema. We employed a spreadsheet to collect metadata for
all of the studies: title, authors, year of publication, publication type, venue,
abstract, and keywords. Additionally, we gave a brief summary for each study and
rationales for inclusion or exclusion. If a study was included, then we determined
its classification categories. The resulting table for all primary studies is available
at http://www.onekin.org/content/spl-evolution-mapping.

40

http://www.onekin.org/content/spl-evolution-mapping

Chapter 2. Mapping Software Product Line Evolution

2.4.2 Phase 2: Study identification
This phase includes: conducting the search and filtering studies. Additionally, we
added the evaluating the search step to verify that we did not miss any important
study (see Figure 2.2-“Phase 2”). Figure 2.3 depicts the process.

2.4.2.1 Conducting the search

This step deals with building a search string to query digital databases. We
followed the PICO approach as suggested by good practices on systematic reviews
[PVK15, KC07]. P stands for population. In our case, population refers to the area
on SPLs. I stands for intervention. In our case, the procedure to be assessed is
evolution. C corresponds to Comparison. Here, we do not compare different
strategies for evolution but assess the area as a whole. Finally, O stands for
Outcome which does not apply to our study either. The identified keywords are
then, “Software Product Lines” and “Evolution”.

Next, synonyms should be found. Along the guidelines of Petersen’s.
[PVK15], the following related mapping studies were consulted: [CB11,
MMCdA14, LC13, KG09]. Additionally, we conducted a pilot study over the
IEEE database to find a balance between hits and noise. We noticed that the
terms “evolution” and “maintenance” tend to be used interchangeably. Hence, we
included both terms. This resulted in the following search string:

(("product lines" OR "product families" OR "product family" OR
"product-lines" OR "product-families" OR "product-family")

AND

("evolution" OR "evolving" OR "maintenance" OR "maintaining"))

We restricted the search to studies published up to July 2015. The following
electronic databases were consulted: IEEE Xplore 3, ACM Digital Library4,
Springer Link5 and Science Direct6. The query was matched against the title, the
abstract and the keywords. Unfortunately, at the time of this study, Springer did
not account for such focused search, and we resorted to posing the query against
the full article content. Additionally, previously known references (identified

3http://ieeexplore.ieee.org
4http://dl.acm.org/
5http://link.springer.com/
6http://www.sciencedirect.com/

41

http://ieeexplore.ieee.org
http://dl.acm.org/
http://link.springer.com/
http://www.sciencedirect.com/

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Step 3: Evaluating the
 search

Step 2: Filtering studies

Step 1: Conducting search

ACM DL
(442)

SpringerLink
(567)

ScienceDirect
(79)

Manual
(10)

Merged Studies
(1409)

IEEE Xplore
(311)

Filtered studies
(98)

Filter by title,
abstract
(233)

Filter by
introduction,
conclusions
(987)

Filter by full
content
(21)

Initial set of
studies
(1339)

 Studies from
Botterweck et al.

(9)
Primary studies

(107)Source of Studies

Process Steps

 Studies Filtering

Legend

Remove
duplicates
(70)

Figure 2.3: Study identification process.

42

Chapter 2. Mapping Software Product Line Evolution

during the analysis of related literature in the “planning” phase) were manually
added. Refer to Figure 2.3 to inspect the number of the studies that each digital
database returned. Figure 2.3-“Step 1” highlights how Springer Link returned
most primary studies (40,2%). Next, ACM Digital Library, Science Direct , IEEE
Xplore, and manually retrieved studies, returned 31,4%, 5,6%, 22,1% and 0,7%,
respectively. In summary, we obtained 1409 primary studies in this first step,
where 70 were duplicated and hence, removed. This leads to 1339 initial studies.

2.4.2.2 Filtering studies

For filtering, we formulated inclusion and exclusion criteria (already presented
in Section 2.4.1.1). A paper was selected as a primary study only when it met
all the inclusion criteria and none of the exclusion criteria. Filtering was mainly
conducted by one researcher. When the researcher was not sure about including
or excluding a paper, the other researcher was asked to discuss and decide. Next,
we outline the main debates:

• EC1 (“The study is not centric to SPL”). Some studies addressed SPLs
incidentally, not really focusing on SPLs. For instance, studies just
mentioning SPLs as related work (e.g., [AC07]).

• EC2 (“The study does not address evolution”). We found that evolution
might encompass a great variety of concerns such as migration or
refactoring. As noted in Section 2.3, we understand evolution as
“activities to make enhancements”. Hence, we left outside activities
such as SPL migration ([BLL08, LC13]), SPL bad-smell detection
([ANS+04, LP07, GpKL14, BGvS10, PPF+14, VFAC14]) or SPL
refactoring ([ACA08, AGM+06, RB08, STKS12, SLB13]) or SPL bug-
fixing ([KSLG11, KSL+13]). We also excluded studies on traceability
with a focus on trace extraction and trace specification ([AKM+10]
[MPK12][MCNY07][AC07][SPZ09][VPS+12][YGW12]).

• EC4 (“The study is grey literature”). We excluded grey literature, and also
extended abstracts, tutorials, tool demos, and doctoral symposium papers
(e.g., [VRG14]).

• EC5 (“The study is a delta of another study in the review”). 26 deltas were
excluded in favor of the paper that more extensively detailed the issue (e.g.,
[tBMP11, BPPK09, WMHB11]).

43

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

We applied a three-stage filtering process to the initial set of 1339 studies (see
Figure 2.3-“Step 2”). Filter 1 looks at the title and abstract (233 papers left out).
Filter 2 looks at the introduction and conclusions (987 papers left out). Finally,
filter 3 looks at the content (21 papers left out). At a given stage, a study was
filtered out only if the researcher doing the work was fully sure that it met all
the exclusion criteria and none of the inclusion criteria. Otherwise, it went to the
next filtering stage. If reaching the third stage, the study was revised by the two
researchers, and a consensus was reached. The process resulted in 98 primary
studies.

2.4.2.3 Evaluating the search

The filtering of studies was mainly conducted by one researcher, which is a threat
we were aware of. To reduce the risk of having missed any important study, we
followed Petersen et al. [PVK15] guidelines, which recommend to cross-check
the resulting studies with a test-set of studies. Our test-set was extracted from
the most up to date summary on SPL evolution by Botterweck et al. [BP14].
From the set of Botterweck’s references we excluded those that do not met our
inclusion/exclusion criteria, and obtained a final test-set of 34 studies. We then
cross-checked these 34 studies with our 98 primary studies. The cross-check
revealed 9 new references. This rises the number of primary studies to 107.

2.4.3 Phase 3: Data extraction and classification
This phase iterates along two tasks, relevant topics keywording and data extraction
and mapping (see Figure 2.2-“Phase 3”).

2.4.3.1 Relevant topic keywording

This process yields the classification schema. Our classification schema includes
four facets: “Research type”, “Product-derivation approach”, “Asset type” and
“Evolution activity”. The classification schema is grounded in the literature.
Specifically, the “relevant topic keywording” process was performed to refine
the categories for facet “Evolution activity”. We departed from a coarse-grained
classification for “Evolution activity” first proposed by Yau et al. [YCM93]. This
classification was refined by means of the “relevant topic keywording” process.
Within this process, a reviewer read the papers and manually look for keywords
and concepts that reflected the contribution of the papers. Afterwards, the set of

44

Chapter 2. Mapping Software Product Line Evolution

keywords from the different papers were combined together and clustered to form
the fine-grained categories for the “Evolution activity” facet. The resulting fine-
gained schema is later presented in Section 2.5, as part of the mapping of primary
studies. Next paragraphs provide the description of the four facets.

Facet 1: Research type Description & Derivation Method. The research type
reflects the research approach used in the primary study. As other SMSs in
software engineering [ER11], research type categories are based on the scheme
proposed by Wieringa et al. [WMMR05].

Classification Schema:

• “Experience papers” describe the experience of the authors, usually in
practice, using a certain method, technology, etc. Often, these papers are
written by people from industry.

• “Conceptual proposals” sketch a new way of looking at existing things,
providing a vision or philosophical view on a subject matter.

• “Solution proposals” describe a solution which is usually illustrated with
an example, case study, running example, etc. The work is barely or not
validated; the proposal is only explained, and it is shown how to apply it.

• “Validation research” describes validation of research that is not deployed in
practice, for example, by an experiment, performing some kind of tests, lab
studies, etc. Usually it follows a solution proposal. It answers the question:
is the proposed solution “good”?

• “Evaluation research” describes an evaluation of research, usually by seeing
how the solution works in practice or comparing it with other solutions,
pointing out positive and negative points. It is more extensive than
validation and often carried out within an industrial setting. It answers the
question: is the proposed solution the “right” solution?

This facet somehow serves as an indication of maturity. For instance, the existence
of case studies or prototype tools in an academic context indicates at least a certain
degree of validation (“Solution proposals” and “Validation research”). On the
other hand, “Experience papers” and “Conceptual proposals” might denote an
incipient research area.

45

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

This classification schema is disjointed, i.e., a study belongs to a unique
category. If a study addresses two categories (e.g., a solution and its validation),
the “uppermost” category is selected (e.g. validation). From a maturity
perspective, categories rank as follows: “Evaluation research” > “Validation
research” > “Solution proposals” > “Conceptual proposals > “Experience papers”.
Note that both “Validation research” and “Evaluation research” will cover studies
that propose new solutions (if they are validated or evaluated), as well as papers
that address the validation or evaluation of existing solutions. Hence, we could
not determine whether solutions being evaluated/validated are new or they have
already being proposed. For our purposes, this is not an issue since our emphasis
is on determining the maturity level of each research area, regardless of whether
solutions are new or not.

Facet 2: Product-derivation approach Description & Derivation Method.
It refers to the way products are obtained from core-assets. Two approaches
are commonly distinguished: annotation-based (a.k.a. negative variability) and
composition-based (a.k.a. positive variability) [ABKS13a]. However, if the
abstraction level of assets is also considered, a number of studies also address
model-driven SPLs. A minority yet practical approach for product derivation is
the use of clone-and-own.

Classification Schema:

• “Annotation-based ”. Here, the code of all features is merged into a single
code base, and annotations spot which code belongs to which feature.
During product derivation, all code that belongs to deselected features is
removed (at compile time) or ignored (at run time) to form the final product
[BPSP04, Kru01]. Pre-processors are a case in point. They typically
provide facilities for conditional compilation, where marked code fragments
in the source code are conditionally removed at compile-time. Annotations
are realized through tags, such as #ifdef and #endif.

• “Composition-based”. Here, features are realized as compassable units,
ideally one unit per feature. During product derivation, all units of all
selected features and valid feature combinations are composed to form
the final product. Frameworks [JF88], Component-based development,
Feature-Oriented Programming (FOP) [BSR03, Pre97], Aspect-Oriented
Programming (AOP) [KLM+97] or Delta-Oriented Programming (DOP)
[SBB+10] applied to SPLs fall within this category.

46

Chapter 2. Mapping Software Product Line Evolution

• “Model-driven”. Here, code is abstracted in terms of models. During
product derivation, model transformations are used that, ideally, generates
the complete product together with all documentation, test cases, etc., in
a fully automated way [GS03, VV11]. Model-driven SPLs can follow
annotations or composition for variability handling. For our purpose,
however, the distinctive aspect is that they abstract the way at which product
derivation takes place, let this be “annotation-based” or “composition-
based”.

• “Clone-based”. In early stages of SPL adoption, developers might
prefer keeping clone-based generated products separately. Here, product
derivation is just “clone-and-own”. Nevertheless, those products conform a
family, where changes in one product might need to be propagated directly
to sibling products without the intermediation of an SPL infrastructure
[RCC15].

• “Hybrid”. This comprises studies that somehow combines or blend some of
the aforementioned approaches.

This classification schema is disjointed, i.e. a study belongs to a unique
category. Papers addressing model-driven SPLs are so classified, no matter
whether annotation or composition is used. In this way, we want to gain a glimpse
to the extent model transformation is being involved in product derivation.

Facet 3: Evolution activity Description & Derivation Method. Activities
involved in SPL evolution. We tap into the change mini-cycle model of Yau et
al.[YCM93].

Classification Schema:

• “Identify change”. Customers, product engineers, domain engineers, the
target market, maintenance needs or competitors might exert evolutionary
forces over an SPL. “Identify change” has to do with monitoring those
sources of change.

• “Analyze and plan change”. Program comprehension is essential to
understand what parts of the software will be affected by a requested
change. In addition, the extent or impact of the change needs to be assessed
to obtain an estimation of how costly the change will be, as well as the
potential risk involved in making the change. This analysis is then used to
decide whether it is worth carrying out the change.

47

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

• “Implement change”. This activity conducts the change. The large number
of assets and stakeholders involved in SPLs recommend error prevention
and guidance mechanism to be in place.

• “Verify change”. Techniques to re-verify the SPL after change are crucial
to ensure that the SPL integrity has not been compromised.

This classification schema allows for categories to overlap, i.e. a study might
belong to more than one category. A finer-grained schema is later presented in
Section 2.5, as part of the mapping of primary studies.

Facet 4: Asset type Description & Derivation Method. Type of the SPL asset
being subject to evolution. Types are obtained from the reviewed studies.

Classification Schema:

• “Variability model”. Variability modeling is to efficiently describe
more than one variant of a system. Different approaches to
capture such variability have been proposed: Feature Models (FMs)
[Kan90], cardinality-based FMs [KC05], Decision-Oriented Variability
Models (DOVMs) [SRG11], and Orthogonal Variability Models (OVMs)
[PBvdL05b].

• “SPL architecture”. An SPL architecture captures the structure
commonalities and structure variability of the SPL products, along the
architecture elements: software assets, the externally visible properties of
those assets, and the relationships among them [CBT+14].

• “Code assets”. Broadly, code assets are the raw material to produce the SPL
products. This can range from code snippets to models (in model-driven
SPLs). Here, code asset might enclose variability built-in, later resolved
during product derivation.

• “Products”. Broadly, a product is what is delivered to a customer.
Depending on the maturity of the SPL, products might be directly derived
from the reusable assets based on feature selection, or rather, require the
intervention of product engineers before being ready for release [DSB05].

This classification schema is “overlapped”, i.e. a study might address evolution for
different assets. Notice however, that studies are classified based on the “evolving
artefact”, i.e. the artefact that suffers the change first, regardless of whether this

48

Chapter 2. Mapping Software Product Line Evolution

change is next propagated to other artefacts. So, a study describing how a change
in the variability model percolates to code assets and products, is classified as
“Variability model”.

2.4.3.2 Data extraction and mapping

Having the classification scheme in place, the primary studies are sorted into
the scheme. The classification scheme evolved while doing the data extraction,
like adding new categories or merging and splitting existing categories. Data
extraction process was performed by one reviewer, who entered data into the data
extraction form fields: (i) gave a short description of each paper’s contribution,
(ii) classified the study into the four facets, and (iii) provided a short rationale
why the paper should be in a certain category. The second reviewer checked
the outcome of this process and checked its correctness. The outcome of this
second review could be agreement, disagreement or doubt. If disagreement, the
document was read (again) in full appraisal by both researchers, and a consensus
was reached. If the classification was still dubious, then the studies’ authors were
contacted through e-mail. This was the case for 15 papers. Additionally, we
contacted authors of other 13 studies, as a cross-check measure. These 28 studies
are listed in the acknowledgements to thank the authors for the prompt reply to
our request. The mapping of the papers and their brief is provided in Section 2.5.
The Appendix holds Table A with the mapping of the primary studies into our
classification schema.

2.4.4 Threats to validity
There are several factors that may threaten the validity of systematic mapping
outcomes. Main shortcomings include: (i) bias in the selection of studies
[BPS+12], and (ii) errors when extracting and classifying studies into detailed
categories [ER11]. Additionally, we evaluate this mapping study along Petersen’s.
evaluation rubric [PVK15].

2.4.4.1 Selection of studies

Biases might happen during both finding and filtering primary studies. The former
has to do with coming up with primary studies. Here, one of the risks is the lack of
standard languages and terminologies [DD08]. To reduce this risk, we refined the
“search string” by (i) consulting the keywords used on related mapping studies,

49

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

and (ii) conducting a pilot study, which let us determine the “noise” introduced by
the selected keywords. Additionally, we referred to the main publishing houses in
computing science (i.e., ACM, IEEE, Springer and Science Direct), even knowing
that a large overlap could exist (indeed, 70 duplicates were detected). Inclusion
and exclusion criteria were established to provide an assessment of how the final
set of primary studies was obtained. Where in doubt, the screening of a study went
from the abstract, introduction and conclusions, to the full-text appraisal. If after
full text appraisal, doubts persisted, then the decision about whether to include or
not the study was jointly taken by the two researchers. This was the case for 21
primary studies (see 2.3).

In addition, we follow recommendations by Casteleyn et al. [CGM14] to
set aside “delta papers”, i.e. papers that provide minor additions compared to
previously published work of the authors. Inclusion of delta papers might mislead
summarization data, specifically if classification is fine-grained with few studies
for each facet. This process led to the identification of 26 delta papers. As
a final validation, we conducted a cross-check with the two main potentially
overlapping survey studies, i.e. [LC13, BP14]. Specifically, primary studies
of Laguna et al. [LC13] present no overlap with our primary studies. As for
Botterweck et al. [BP14], though this work is not a mapping study but a survey,
their references serve to cross-check our’s: 25 overlapping, 9 only in Botterweck,
and 73 only in our study. Besides enriching our set with 9 new references, this
comparison corroborates the role of our work as a systematic mapping endeavor
by introducing 73 new references.

We cannot rule out threats from a quality assessment perspective because
selected studies were assigned no scores7. However, with the aim of increasing the
quality of included studies, we defined exclusion criteria to get rid of potentially
low level quality studies, such as those excluded by “EC4” (grey literature,
extended abstract, tool demo, workshop proposal). Additionally, the selected
digital databases (ScienceDirect, ACM, IEEE Xplore, and SpringerLink) which
are regarded as reliable by the community. Some systematic reviews that include
them are: [DD08, LC13, MMCdA14].

Another threat might be the focus on those studies that specifically target
SPLs. We did not explore whether other software engineering studies addressing
evolution, could be applicable for SPLs. Moreover, our notion of evolution can
be regarded as too restrictive as we did not consider SPL migration or SPL
refactoring.

7In SMSs, quality assessment is not a mandatory practice [PFMM08a].

50

Chapter 2. Mapping Software Product Line Evolution

2.4.4.2 Classification errors

It is possible for authors to introduce bias during the data extraction process. To
reduce this risk, we based the data extraction on the words used in each publication
wherever possible. First, an author conducted the data extraction and classification
process. The outcome of this second review could be agreement, disagreement
or doubt. If disagreement, the document was read in full (full appraisal), and a
consensus was reached. If the classification was still dubious, then the document’s
authors were contacted through e-mail. This was the case of 15 papers. As a
crosscheck, we additionally contacted authors of 25 papers, although only 13 did
finally reply. No inconsistencies were appreciated except for the facet “Research
type”: 5 authors would classify their paper differently w.r.t to this facet. The main
confusion originated from the distinction between “validation” and “evaluation”
research. Additionally, some authors misunderstood when a study should be
considered an “experience paper”. This is not totally unexpected. Wohlin et al.
[WRdMSN+13] already pointed out how misleading this facet can be. The authors
reveal how two independent studies classified the very same papers differently,
w.r.t the “Research type” facet. This blurriness might advice to stick to the
classification of a single observer that makes clear his understanding of this facet’s
values, and where the assessment of which research type was conducted is based
uniquely on what it is described in the paper. The alternative would be to collect
the answers of the 67 studies’ authors whose understanding of what “validation”
and “evaluation” is might differ, and whose appreciation might be partially biased
from experiences not always fully documented.

2.4.4.3 Evaluation rubric for this mapping study

Petersen et al. [PVK15] devise an evaluation rubric where to assess the quality
of a mapping study process. This rubric can be used for readers to quick assess
the actions undertaken in a SMS. Specifically, authors identify 26 actions worth
applying. The more actions taken, the higher would be the quality of a SMS. Table
2.4.4.3 outlines the actions undertaken in this SMS. Additionally, we include
a fourth column which points to the Section in which the action is addressed.
According to the findings of Petersen et al., the median quality of the analyzed
SMSs is 33%. This SMS undertakes 15 out of the 26 suggested actions, which
yields a ratio of 57%.

51

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Phase Actions Applied Refer to ...

Phase 1 Motivate the need and
relevance

Introduction & Background &
Protocol definition (Sections 2.2 &

2.3 & Section 2.4.1)
Define objectives and

questions
Introduction & Protocol definition

(Section 2.4.1)
Consult with target audience to

define questions
• -

Phase 2 Choosing search strategy
Snowballing • -

Manual References from [BP14] (Section
2.4.2.2)

Conduct database search ACM, IEEE, SpringerLink &
ScienceDirect (Section 2.4.2.1)

PICO Phase 2: data collection (Section
2.4.2.1))

Consult librarians • -
Iteratively try finding more

relevant papers
Conduct a pilot study (Section

2.4.2.1)
Keywords from knows papers From papers [MMCdA14, CB11,

LC13, KG09](Section 2.4.2.1)
Use standards, encyclopedias,

and thesaurus
• -

Evaluate the search
Test–set of known papers Test-set references from [BP14]

(Section 2.4.2.2)
Expert evaluates result • -

Search web-pages of key
authors

• -

Test–retest • -
Inclusion and Exclusion

Identify objective criteria for
decision

Inclusion and exclusion criteria
(Section 2.4.1)

Add additional reviewer,
resolve disagreements between

them when needed

• -

52

Chapter 2. Mapping Software Product Line Evolution

Decision rules (what to do
when doubts)

Postpone paper to next filtering level
& ask second reviewer (Section

2.4.2.2)
Phase 3 Extraction process

Identify objective criteria for
decision

Provided along the classification
schema (Section 2.4.3.1)

Obscuring information that
could bias

• -

Add additional reviewer,
resolve disagreements between

them when needed

We asked authors of 28 studies
(Section 2.4.4.2)

Test–retest • -
Classification scheme

Research type Facet “Research type” included
(Section 2.4.3.1)

Research method • -
Venue type Venues and frequencies reported

(Figure 2.5)
Validity

disc.
Validity discussion/limitations

provided
Validity evaluation reported (Section

2.4.4)

Table 2.4.4.3. Actions conducted in this SMS: taken () & not taken (•).

2.5 Mapping of primary studies

This section provides a short summary for the primary studies. This implied
a more carefully reading not just of the abstract but the whole content. This
permitted a finer-grained elaboration of the facet “Evolution activity” based on
the challenged addressed by the primary studies (see Figure 2.4). Table A, in the
Appendix A, provides the outcome. Next, we dedicate a subsection to each of
these nine activities. For each activity, we first outline what makes this activity
challenging for SPLs. Next, we provide a brief about how these challenges are
addressed in the primary studies.

53

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Software Product Line Evolution

 Identify
change

Analyze and
plan change

Implement
change

Verify
change

Monitoring
SPL

environment

Monitoring
customers

Ascertaining
change

impact scope

Decision-
making

Planning and
road-mapping

Built-for-
change

Built-with-
change

Inconsistency
detection

Scalable
verification

Monitoring
products

Change
synchronization

Figure 2.4: Elaborating on the “Evolution activity” facet.

2.5.1 Identify change

SPLs broader scope and larger life-span make asset evolution unavoidable. Asset
evolution happens in response to forces both outside the SPL organization and
within it. By monitoring these forces, engineers can identify emerging needs that
the SPL may support. Studies differ in the force being monitored: customers, SPL
environment, or products (i.e., product engineers).

2.5.1.1 Monitoring customers

Customer needs can be identified trough requirement volatility analyses.
Requirement volatility is the tendency of requirements to change over time in
response to evolving needs [PYZ11]. In SPLs, requirement volatility tends to
be higher due to its broader scope. Here, requirement volatility analysis helps
to predict which requirements might change and how. The analysis is based on
the priorities that customers assign to each of the SPL requirements. Hence, by
monitoring changes to these priorities, engineers identify the set of the requested
adaptations, e.g., new requirements may arise, others become obsolete, others may
shift from mandatory to optional, etc. This approach is investigated by Savolainen
et al. [SK01] and Villela et al. [VDJ10]. An SPL requirement-based taxonomy is
provided by Schmid et al. [Kla08].

54

Chapter 2. Mapping Software Product Line Evolution

2.5.1.2 Monitoring the SPL environment

Discussion forums, competitors’ websites and market studies can provide useful
data silos where to mine future SPL needs. Bockle et al. [Böc05] discusses
measures to monitor the SPL environment, including: (1) workshops and
discussion forums, (2) usability labs where customers can play with new products
and where ideas and complaints are collected, (3) prototypes for new products,
and (4) competitors.

2.5.1.3 Monitoring products

Product engineers are responsible for providing feedback to domain engineers.
To spur product-engineer feed-backing, Carbon et al. [CKM+08] adapt the agile
practice “planning game” [Pla] to SPLs. By means of so-called reuse stories,
product engineers are instructed to provide concrete suggestions about how to
improve the reusability of SPL assets. In addition, product engineers might
develop product-specific assets. These assets may “inspire” domain engineers.
This is illustrated by Mende et al. [MBKM08] and Creff et al. [CCJM12] where
code analysis tools are developed to identify product-specific assets candidate to
be promoted as SPL core-assets.

2.5.2 Analyze and plan change
Even to a larger extent than for single products, SPL assets exhibit numerous
dependencies: (1) intra-feature dependencies (e.g., <excludes> or <includes>
dependencies in variability models); (2) feature-to-code dependencies (a.k.a.
configuration knowledge) or (3), product-to-feature dependencies, which are
tracked through product configurations. This coupling makes changes rarely be
a one-off event. Hence, ascertaining the change impact scope is a first step to
decide whether or not to carry out the change. This requires of decision making
processes tuned to the kind of change being considered. For instance, changing
the variability model does not have the same implications than changing a code
asset. If the change goes ahead, then planning and road mapping come into play.
Next, we look into these issues.

2.5.2.1 Ascertaining the change impact scope

Change Impact Analysis (CIA) is defined as "identifying the potential
consequences of a change, or estimating what needs to be modified to accomplish

55

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Triggering Source \
Triggered Target

Variability
model

Architecture Code asset Product

Variability model [PDŠ12],
[HVLG12]

[HVLG12] [Liv11],
[HVLG12]

[TBK09],
[DKvDP15],
[MARC13],
[HRGL12],
[MW11],

[HVLG12],
Architecture [HVLG12] [HVLG12],

[DPG14]
[HVLG12] [MW11],

[HVLG12]
Code asset [HVLG12] [HVLG12] [YM12],

[JZZZ08],
[PHS11],

[HVLG12]
,[RBK14]

[HVLG12],
[MW11]

Product - - [KSS15] [RCC13,
RKBC12]

Table 2.3: CIA scenarios.
a change" [Boh96]. CIA scope depends on the asset at hand. Variability
models are those with broader impact when evolved. This explains why CIA
for variability models has received most attention. But it is by no means the only
one. Table 2.3 depicts different change scenarios arranged along the root of the
change (“source”) and its ripple effects (“target”). Note that it is possible for a
study to give support to more than one scenario. Next we provide a paragraph for
each row.

A change in the variability model might impact ...
... the variability model itself. Paskevicius et al [PDŠ12] resort to Prolog rules

to assess how changes in the Feature Model (FM) affect other parts of the FM.
The FM is expressed in Prolog. For instance, the rule fm :- all(alt(f1), f2, f3)
describes a FM with f2, f3 as compulsory features, and f1 as optional. FM changes
are also captured as Prolog rules. When the FM is changed, the rule engine
computes the set of features affected by the change as a result of the existing
feature dependencies (e.g. excludes, includes, and feature associations). The
output is the set of features impacted by a change. Heider et al. [HVLG12] present
an industrial case study, where they identify engineers’ desired trace links when
performing CIA in a component-based SPL. Desired traces include links between
the variability model and solution space assets (e.g., components, interfaces, and

56

Chapter 2. Mapping Software Product Line Evolution

dependencies between them) to ascertain how changes in the variability model
impacts the solution space. They further discuss implications for a tool support
CIA based on the eclipse IDE.

... code assets. Livengood et al. [Liv11] describe industrial experience on
assessing CIA for large and complex variability models (those having multiple
constraints). Specifically, authors stress how difficult it is to determine how
implementation is affected when variability model constraints are modified. So
far, the organization relies on engineers to determine the impact of such changes.
Authors advocate for enhanced traceability between the variability model and the
code assets.

... product configurations. Changes to the variability model may alter
the configuration space (e.g., introducing a new feature adds new product
configurations). Thüm et al. [TBK09] present an algorithm to reason about the
impact of FM changes on product configurations. The algorithm takes the two
versions of the FM (i.e. before and after the change) and classifies changes as
follows: (1) generalization, if the set of valid product configurations is extended
with additional alternatives, (2) refactoring, if the same configurations exist, (3)
specialization, if the set of valid configurations is reduced, and (4) arbitrary
change, if some of product configurations are removed and others are added.
Similar goal but for multi SPLs (i.e., a set of interacting and interdependent SPLs)
is presented by Dintzner et al. [DKvDP15]. Murashkin et al. [MARC13] develop
a visual tool to detect the set of product configurations that become non-optimal
when the FM changes (w.r.t. quality attributes). In their approach, FMs are
annotated with quality values, e.g., cost and usability. Product configurations
are also annotated with expected objectives, e.g., product configuration p1 can
have at most a cost of 1500, and usability must range between 100 and 300.
When a feature quality value evolves (e.g., the cost of a feature increases), the
tool highlights those product configurations that do not fulfill the set objectives.

... already derived products. Changes in the variability model may force
products to be updated accordingly. Michalik et al. [MW11] propose a
preliminary CIA model where to keep track of derived products’ configurations,
so that whenever the FM changes engineers can assess the affected products.
Heider et al. [HRGL12] introduce a tool for domain engineers to get feedback
on how changes performed to the variability model may affect existing products.
Given a new version of the variability model, the tool re-generates existing
products according to their configurations. Next, the tool triggers regression tests
for domain engineers to assess the impact of these changes on the re-generated
products.

57

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

A change in the SPL architecture might impact ...
... the SPL architecture itself. Architectures are the result of design decisions.

If those decisions are recorded and contextualized through the features, then so-
captured design decision can help to trace core components back to features.
This is the insight of Díaz et al. [DPG14]. Consider an ATM SPL. Let’s
balanceAccount be a feature about providing information about user account
balance. This feature provides context for the design decision:“if there is
an overload of requests, reject it”. This decision is in turn traced back to
the architecture component that implements it (e.g., Balance component). On
changing feature balanceAccount (e.g., adding new variations or excluding
dependencies), CIA can go down to the potentially affected components. This
scenario gets more complex when design decisions might rest on other design
decisions so that their algorithm goes down until all affected components are
ascertained. Authors evaluate their approach in an industrial case study on smart
grids.

... already derived products. Changes in either the component dependencies
or the bindings between these components and the features, may force products
to adjust to the new arrangement. Michalik et al. [MW11] propose a preliminary
CIA model where to keep track of derived products’ configurations. Heider et al.
[HVLG12] present an industrial case study, where they identify engineers’ desired
trace links when performing CIA. Desired CIA include assessing SPL architecture
changes on (1) derived products, (2) dependencies with other architectural
components and interfaces, and (3) features in the variability model.

A change in code assets might impact ...
... the variability model. Changes to component interfaces and component

dependencies often affect variability models [HVLG12]. Heider et al. [HVLG12]
present an industrial case study. They identify engineers’ desired CIA, including
how code assets changes affect variability models. A model is generated based on
those desires and a possible realization in Eclipse is discussed.

... code assets themselves. Clone&own is not limited to products. Code assets
can also be obtained by cloning existing code assets. In this setting, Jiang et al.
[JZZZ08] present an automated technique to identify code asset that need to be
changed when a code asset changes. For component-based SPLs, Yazdanshenas
et al. [YM12] introduce a fine-grained source code analysis (at code line level)
where the impact of component line-grained changes in other components is
assessed. For annotation-based SPLs, Ribeiro et al. [RBK14] develop an Eclipse-

58

Chapter 2. Mapping Software Product Line Evolution

based tool for annotation-based SPLs. Given a point in code (the one to be
changed), this tool identifies the set of additional code changes associated to
other features that need to be addressed for the change to be completed. For
model-driven SPLs, Pichler et al.[PHS11] and Correa et al. [CdOW11] tackle
change impact on meta-models and model transformations. Pichler et al. [PHS11]
envisage ten changing scenarios and their respective scopes are analyzed. For
instance, a change into a meta-model might ripple through the meta-model itself,
model-to-model transformations or model-to-text transformations. Based on the
classification for meta-model changes proposed by Gruschko [Gru07], Correa
et al. [CdOW11] adapt it for model-driven SPLs. For instance, Non-breaking
changes (NBC) in SPLs are those changes that do not break consistency and
variability rules, and therefore, no product is affected. Authors classify changes
in model-driven SPLs (feature changes, meta-model changes and transformation
changes) according to this classification, and identify eventual ripple effects.

... already derived products. New enhancements in reusable code assets might
impact already derived products. Michalik et al. [MW11] proses a preliminary
CIA model that keeps track of the configuration details for each derived products.

A change in a product might impact ...
... code assets. Improvement opportunities can be detected by product

engineers. Cossio et al. [KSS15] tackle this scenario. For Version Control
Systems (VCSs), development histories can be used to trace products back to
the SPL release version from where the product was initially derived. Previous
release versions that hold the targeted asset can be detected as well, which, in
turn, permits to identify which other SPL products might benefit.

... already derived products. In clone-based SPLs, changes made to one clone
might be propagated to other clones. Rubin et al. [RKBC12] propose a model to
describe information for managing cloned products. Herein, if a clone changes,
then this model could point to other affected features within the clone as well
as identify other impacted cloned products. The authors discuss the realization
through VCSs. In a later study [RCC13], authors approach is validated through a
set of industrial case studies.

2.5.2.2 Decision-making

A change request is not a must-do. Developers should first explore the impact
of conducting a change. This very much depends on the kind of change being
conducted. This subsection classifies studies based on our understanding of the

59

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Decisions to be
made

Primary Studies

Make Variable /
Make Common

[TB07], [TBC08], [KB12], [DSB09],
[NRG08], [RR03], [LDSL07], [APT12],
[Sch06a], [SS08], [PYZ11], [CGCS04]

Make Generic/
Make Specific

[HGR10]

Product-local
change

[GF13], [GF11], [KR13]

New product [CGCS04], [HFG+10], [TM14], [MKR94], [SV02]

Table 2.4: Classification of studies based on the decision to be taken.
change type being considered. Change types are those indicated in Figure 2.1.
Table 2.4 pigeonholes studies based on these change types. Note that it is possible
for a study to give support for more than one change type.

Make variable / make common Here, the issue is about finding the right
amount of variability. Too much commonality moves the SPL towards traditional
single product engineering. On the other hand, more variability broadens the SPL
scope at the expense of more maintenance (and upfront investment). On the search
for a compromise, decision-making approaches come in handy, specifically,
the WinWin model [BBHL94] and the Question Options Criteria (QOC) model
[MYBM91]8. Thurimella et al. [TB07] propose a combination of the EasyWinWin
model (i.e., an adapted version of the WinWin model) and the QOC model.
Specifically, the model includes a question (e.g. “what are the changes that have
been requested for feature F1?”), a set of options (e.g., changing variability from
mandatory-to-optional, from optional-to-mandatory, to add a new feature or to
delete a feature), and finally, some criteria (e.g., cost to implement each of these
options). In this way, Thurimella et al. [TB07] adapt QOC to SPLs. Alternatively,
Thurimella et al. [TBC08] and Kumar et al. [KB12] enrich variability models
with annotations about feature rationales. This information can later be used to
assess what and how to manage variability. This approach is later evaluated by
Kumar et al. [KB13].

In the same vein, Deelstra et al. [DSB09] introduces the variability assessment
8QOC models arrange decision making along four steps. First, define the issues (questions).

Second, identify available solutions (options). Third, define the criteria (e.g., estimates about
development efforts, benefits and risks) to rate the available options. Finally, a decision (option)
is selected on this basis.

60

Chapter 2. Mapping Software Product Line Evolution

method COSVAM. COSVAM requires engineers to provide both (1) the SPL’s
variability model, and (2), the required variability (i.e., the variability necessary
to accommodate the change request). The tool detects mismatches between the
provided and the required variability. If mismatches arise (i.e., existing product
configurations become invalid), the tool suggests the set of adaptations needed
to overcome the mismatches. However, estimating the cost of such changes is
not always easy. Predictive modeling is a process used in predictive analytics to
create a statistical model of future behavior. Schackmann et al. [Sch06a] and
Sarang et al. [SS08] advocate to create such models from past evolution-driven
developments efforts. These models can later be used to estimate costs for the
different SPL evolution scenarios (e.g., fix a feature, add a new feature, etc.). At
this respect, Peng et al. [PYZ11] assess the profit that a change would imply. The
metric is based on the following estimates: (1) the probability that the change will
emerge (estimated by analyzing the market and the technological trends), (2) the
volume of the change (the number of products affected by the change) and (3), the
added customer value for each product (estimated by multiplying the price and the
relative value of all the impacted problems identified in change impact analysis).

If the focus is on risks assessment, Riva et al. [RR03] present an industrial case
study, where architectural assessment helped to determine if a new feature would
put under risk the SPL integrity. Architectural assessments are used to identify
defects and shortcomings of the SPL architecture. If the architecture is weak,
new features may compromise the integrity of the SPL. Here, SPL managers may
postpone the new feature until the architecture is ready to support it. On the other
side, new features may alter the functionality of already existing features. Hence,
a careful analysis of feature interactions is vital. Liu et al. [LDSL07] focus on
the identification and modeling of safety-critical feature interactions to determine
whether they may cause a hazard. For component-based SPLs, Annosi et al.
[APT12] present an industrial experience on risk management when updating
COTSs9. The upgrade may surface incompatibilities with other features resulting
into unforeseen side effects. Authors build a decision model that considers expert
knowledge and dependencies between the SPL architecture elements (i.e. existing
components) and the COTS candidates.

Make generic / make specific Here, the issue is about making a variable
asset product-specific (“make specific”) or a product-specific asset generic
(“make generic”). For this matter, Heider et al. [HGR10] resort to a WinWin

9COTS are pre-packaged solutions usually acquired to a third-party for a fee.

61

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

model. Key stakeholder roles are first identified (e.g., salesperson, product
engineers, customers, SPL managers), and next, negotiation clusters are set (e.g.,
development, market, management). For each negotiation cluster, stakeholders
describe their individual objectives and expectations as win conditions. For
instance, project managers might favor cheap and fast development while product
engineers prefer to develop with reuse despite introducing additional delays. If
all stakeholders concur on a win condition, then the condition is turned into an
agreement. Otherwise, stakeholders identify conflicts, risks, or uncertainties as
issues. Stakeholders seek options to overcome the collected issues and explore
tradeoffs as a team. Options can then be turned into agreements that capture
mutually satisfactory solutions.

Product-local change When core-assets are enlarged with a “newcomer”, a
question arises about which SPL products to be used as a test bed. Karimpour
et al. [KR13] tackle this issue. They compute the synergy between the newcomer
and distinct products in terms of value and integrity. The value is provided by
products’ customers, based on how much value will be added to the product
if the newcomer is incorporated. The integrity computes cohesion, i.e. the
degree to which (a product’s) features are perceived to be related to the newcomer
(e.g., play and pause features of a video-player systems are more cohesive than
play and volume features). The best product candidate would be the one with
maximum value and integrity. In a similar vein, but now focusing on product
architectures, Gámez et al. [GF13] resort to diff tools to compute the architectural
differences between a product’s current configuration and the new configuration
that will emerge, should the newcomer be incorporated. The output identifies
which components must be added or removed from each product. Managers
would then assess the cost for producing the upgraded product versions.

New product SPLs can potentially account for a large number of products
based on different feature combinations. However, not all products end up being
realized. The cost of a product is not limited to generating the product. Besides
the potential pressure for product-local changes, a new product is a new asset to
be maintained when the SPL evolves. This begs the question: how to decide
the introduction of a new SPL product? Studies resort to simulation models.
Simulations involve designing a model of a system and carrying out experiments
on it as it progresses through time. Here, the model is the SPL ecosystem, and the
experiments are about the impact of introducing the new product. Studies differ

62

Chapter 2. Mapping Software Product Line Evolution

in the estimate being considered, e.g. development effort, time-to-market, change
resiliency or marketability.

Chen et al. [CGCS04] resort to simulations to estimate the development effort
and time-to-market. SPL managers should first create the model, indicating:
the number of current SPL products, phases on which the different products
are (development, release, waiting for core-assets requested), phases on which
core-assets are (in development, released), and the number of developers and
their current state (free or under development activities). SPL managers can
next simulate the desired change (e.g., introducing a new product). The
simulation will tell managers about: the time-to-market for the new product,
its development effort, and the additional maintenance effort caused by the
change. Effort estimates are traditionally obtained based on previous development
efforts. Alternatively, simulation of evolution scenarios can be used. For model-
based SPLs, Heider et al. [HFG+10] resort to this approach to measure model
maintenance effort.

Minh et al. [TM14] aim to predict products’ resiliency. Experts specify the
prediction of future evolutions in a feature-like model (called eFM). Based on
both the eFM and the current feature model, authors provide a configuration
survivability analysis for new product configurations. This analysis measures
whether a configuration would still be operational in the presence of forthcoming
evolutions.

Murthy et al. [MKR94] tackles marketability. Product marketability metrics
are proposed to capture customer affordability (willingness to pay) and product
quality. Though the study focuses on single applications, the authors argue that
these metrics can also be useful to assess whether a new product should enter an
SPL. An interesting issue is whether product introduction is a one-off event or
rather, it might be better to introduce several products as a single shot. Schmid et
al. [SV02] discusses the economical impact of these two scenarios.

2.5.2.3 Planning and road-mapping

The change backlog rarely holds a single petition. Rather, distinct changes are
often competing for attention and resources. Harmonious evolution requires
roadmaps and release plans that guide the evolution journey.

Road-mapping A project roadmap is a simple presentation of project ambitions
and project goals alongside a timeline. The aim is to manage stakeholder
expectations, and generate a shared understanding across the teams involved.

63

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

For SPL evolution, a roadmap provides a global vision of the SPL with features
and products to be offered some years from now. Pleuss et al. [PBD+12] and
Schubanz et al. [SPP+13] propose the use of FMs to describe roadmaps. Such
FMs are called EvoFM, which include “the what” and “the why” of the change.
EvoFMs are composed of FM fragments. A fragment gathers related features that
are added or removed together during the same evolution step. Dependencies
between fragments can also be stablished, just like in an standard FM. Each
evolution step can then be represented by a “configuration” of the EvoFM, i.e.
a selection of fragments that together make a FM. The evolution of a FM can,
hence, be represented by a sequence of EvoFM configurations. Authors visualize
this sequence in a matrix-like roadmap. The horizontal dimension represents
the time line (year), where each column represents an evolution step. Each cell
in the plan represents a configuration decision, i.e. whether a FM fragment is
applied in that version or not. Moving from FMs to SPL architectures, van
Ommering [vO02] proposes for SPL roadmaps to include both products and
components, and most importantly, release dependencies between them. Finally,
Savolainen et al. [SK08] report experiences from industrial SPLs and suggests key
factors for effectively road-mapping, including e.g., decomposing features into
sub-features (to better understand feature inter-dependencies), mapping features
to component versions (to understand how features are mapped to code), and
prioritizing features based on the value that each product gives to each feature.

Release planning A release plan is a company’s current understanding of
what features are going into the next release, how many effective developers
are deployed on it, and the current status of the development effort (ahead,
behind, on-time). It differs from road-mapping in that it signifies that there
are a subset of selected requirements to be implement, and there are committed
resources to implement such requirements. Release planning provides focus
to road-mapping. To know which requirements should be part of the next
release, requirements prioritization is conducted. Prioritization can be based on
distinct criteria: costs and benefits [NRG08], constraints on available resources to
conduct the requirements (e.g., person months until next release) or dependencies
between requirements (e.g., one requirement includes/excludes another) [IKH14].
The large set of concerns to be considered leads Taborda [Tab04] to specify
release plans as matrixes with different layers. Each layer accounts for different
SPL release facets: prioritized product features, allocated requirements for each
component, estimated development effort, scheduled dates, test plans cases, and

64

Chapter 2. Mapping Software Product Line Evolution

delivered product configuration. The author describes the results of practical
trials.

2.5.3 Implement change
CIA strives to identifying the potential consequences of a change. The aim is
collecting data to decide whether the change ends up being implemented or not.
If the answer is yes, then we move to “Implement change”. For classification
purposes, we arrange studies addressing this activity along three main issues:
(1) how to make SPL assets change resilient (“Built-for-change”), (2) how to
accommodate change in a reliable way (“Built-with-change”), and (3), how to
ensure consistency when changes are scattered across different assets (“Change
synchronization”).

2.5.3.1 Built-for-change

Studies strive to anticipate change, and reflect about means to make assets change
resilient [LRZJ04]. Resilience very much depends on the SPL architecture and
the programming paradigm used to implement code assets.

SPL architecture resilience Studies strive to make the SPL architecture
steady through evolution. For planned changes, the wired-in variability of
SPL architectures accommodates well. However, unplanned changes might
compromise the SPL architecture stability. The question is how to ensure
long-term viability of SPL architectures considering that unplanned changes are
unavoidable. Although no golden-rules exist, Tischer et al. [TBM+12] and
Dikel et al. [DKO+97] present some successful industrial cases. In hindsight,
authors propose some guidelines: focusing on simplification (finding a balance
between features that are needed for “tomorrow” and features that are needed
for “today”), adapting for the future (forecasting market and technology trends
that are specific to the SPL architecture), establishing architectural rhythm (fix
regular architecture and product releases that help coordinate the actions and
expectations of all parties), partnering and broadening relations with stakeholders
(e.g., when users want changes to a component, they should negotiate directly
with the component owner rather than directly change it themselves), maintaining
a clear SPL architecture vision across the company (all parties need to know
who is responsible for what), and managing risks and opportunities (e.g.,
review the architecture with customers and stakeholders, tracking and testing the

65

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

assumptions underlying customer requirements). Deng et al. [DLS05] discuss
several evolution challenges for SPL architectures, and proposes a model-driven
approach based on automated domain model transformations. Authors advocate
that their approach is flexible enough to accommodate changes to the SPL
architecture. Finally, Díaz et al. [DPG14] propose an SPL architecting approach
that combines (1) an incremental SPL architecture development based on scrum
sprints, and (2) a modeling technique to specify the SPL architecture and design
decisions that led to each architectural element. Authors evaluate whether their
approach enables to maintain SPL architectures’ flexibility and integrity upon
evolving requirements.

Code asset resilience A number of studies evaluate how variation mechanisms
perform as for change resilience. Traditional programming paradigms have been
assessed by Svahnberg et al. [SB00] and Sharp et al. [Sha99]. Svahnberg
et al. [SB00] compare inheritance, extensions, parametrization, configuration
and generation. Additionally, Sharp et al. [Sha99] discuss object-oriented
mechanisms, including inheritance, aggregation, generic programming, and
conditional compilation. Departing from traditional programming paradigms,
newer approaches have been investigated for SPL realization, namely, Aspect-
Oriented Programming (AOP), Feature-Oriented Programming (FOP), and Delta-
Oriented Programming (DOP).

AOP supports cross-cuts, i.e., functionality that cannot be cleanly decomposed
and tangles/scatters around distinct assets. Tesanovic et al. [Tes07] endorse AOP
as a suitable paradigm to face cross-cutting evolution. Dyer et al. [DRC13]
compare different AOP interface proposals, namely, open modules, annotation-
based point-cuts, explicit join points and quantified-typed events. Figueiredo et
al. [FCS+08] evaluate AOP strengths and weaknesses compared to conditional
compilation in a set of evolution scenarios. Finally, Abdelmoez et al. [AKEs12]
contrast the maintainability effort required during evolution of aspect-oriented
SPLs and object-oriented SPLs.

Next, FOP, i.e., a composition-based approach that provides the notion of
feature as a construct of the programming language. The idea is to decompose
code in terms of features (i.e., feature modules). Object-Oriented Programming
(OOP) resorts to subclassing for extending a class C1 with additional functionality
in subclass C2. In the same scenario, FOP defines a single class C1 but its
definition is split into two assets: the base and the feature so that C1 is obtained
by composing base • feature. There are not two classes but a single class that

66

Chapter 2. Mapping Software Product Line Evolution

is incrementally extended to exhibit a new feature. Countinho et al. [FGFd14]
evaluate FOP in several evolution scenarios. Authors conclude that FOP seems to
be more effective tackling modularity degeneration, by avoiding feature tangling
and scattering in source code, than conditional compilation and design patterns.
Cafeo et al. [CDG+12] compare AOP, FOP and conditional compilation. Cardone
et al. [CL01] propose java-layers (JL), a FOP-like approach for Java, and evaluate
JL against Object-Oriented frameworks in terms of flexibility, ease of use, and
support for evolution.

Finally, DOP. DOP generalizes FOP by allowing removal of functionality, and
hence, brings non-monotonicity to SPLs. In DOP engineers start from a core
module (containing a valid product configuration), and apply deltas to remove,
add, and modify features. Schaefer et al. [SBB+10] introduce DOP, and compares
it w.r.t. FOP in an SPL evolution scenario.

From the previous studies, it can be concluded that there is not a one-size-
fits-all approach. Hence, hybrid approaches are suggested. Aspectual feature
modules, a mix between AOP and FOP, is proposed by Gaia et al. [GFFd14].
Similarly, Loughran et al. [LRZJ04] evaluate framed aspects, a mix between
AOP and frames technology (i.e., a language independent textual pre-processor
that creates software modules by using code templates and a specification from the
developer). Finally, for component-based SPLs, Tizzei at al. [TDR+11] propose
aspectual-components, a mix between AOP and components. Authors evaluate
to what extent this approach supports the evolution of SPLs compared to object-
oriented SPLs.

2.5.3.2 Built-with-change

SPL complexity substantiates the efforts to bring assistance during change
implementation. Studies differ in the asset being the subject of change.

Changing the variability model Error prevention can be ameliorated through
constraints to be obeyed when conducting the change. Romero et al. [RUQ+13]
follow this approach by allowing domain engineers to define authorized changes
to the SPL. Such authorized changes are specified in a model (the evolution
model). This model is next fed to asset editors so that editions should be compliant
with the evolution model (i.e., the constraints). Similarly, Borba et al. [BTG12]
and Teixeira et al. [TBG15] propose the use of templates. Templates regulate the
SPL evolution so that the behavior of the the original SPL products is preserved

67

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Changing the SPL architecture Guidance to conduct change at architectural
level is addressed by Hendrickson et al. [HH07], Knodel et al. [KMNL06] and
Garg et al. [GCC+03]. The first two resort to a diff-like approach to capture
differences between the architecture as-is and the architecture as-it-needs-to-be.
This representation states the architectural elements (components, interfaces and
connectors) that need to be added, deleted or modified. This assists engineers
in determining the changes to be made. Similarly, Garg et al. [GCC+03]
present a tool to visualize different versions of architectural models in terms
of components and connectors. When a change is implemented at code level,
architecture evaluations can then be used to compare the architectural model
with its corresponding implementation at code level. This assists developers in
determining whether the changes have been thoroughly completed.

Changing code assets Introducing changes at code level can be error-prone.
This is more so for composition-based SPLs where code tends to be scattered
across a large number of modules. For example, a module can reference classes,
variables, or methods that are defined in another module. Safe composition
guarantees that a product synthesized from a composition of modules is type-safe.
While it is possible to check individual products by building and then compiling
them, this does not scale. In an SPL, there can be thousands of products. It is
more desirable to ensure that all legal modules are type-safe without enumerating
the entire product line and compiling each product [DCB09]. Schröter et al.
[SSTS14] introduce a tool for FOP, which tells engineers (while developing),
whether their development is type safe, and hence, no compilation errors will
await when composed with other modules. For AOP SPLs, Menkyna et al.
[MV09] advocate to create a change catalog. Once the type of change is identified
(e.g. Adding Column to Grid), this catalogue helps to get an idea of its realization
through AOP constructs (e.g. Performing Action After Event). Authors present
this catalog using a Web applications as a case study. Finally, Ribeiro et al.
[RBK14] address the ripple effect among code assets in annotation-based SPLs.
Based on usage dependencies between code snippets (e.g variables, methods),
a tool highlights the impact that changes in the definition of either variables or
method signatures, have on other snippets using these elements.

Changing products Customers might request product-specific changes.
Product engineers might proceed by developing the bespoken code from scratch.
However, the SPL mindset recommends to tap into the available SPL’s code

68

Chapter 2. Mapping Software Product Line Evolution

assets to look for re-use opportunities. Kakarontzas et al. [KSK08] assist product
engineers on this matter by selecting the component that offer better reuse
opportunities. Using Test-Driven Development, product engineers might resort
to SPL components’ test cases for both developing and testing the bespoken code.

For model-driven SPLs, code assets are realized in terms of models, and
products are obtained through model transformation. Therefore, product specifics
should be handled at the model level. But this is not always possible, and
product-specifics end up being added at the code level. The issue is that once
models become out of sync, any future re-generation of code overrides manual
modifications. To solve this problem, Jarzabek et al. [JT11] propose a flexible
model-to-text generator. The idea is to let engineers weave arbitrary manual
modifications into the generation process rather than directly modify the generated
code.

2.5.3.3 Change synchronization

Change synchronization looks at ways to restore consistency. For classification
sake, we distinguish between “inconsistency detection” (addressed in 2.5.4.1)
and “change synchronization” (this subsection). The former checks whether SPL
assets are kept in a consistent state. The answer is basically “yes” or “no”. On the
other hand, “change synchronization” takes a step further by restoring consistency.
Studies propose restore actions for different SPL assets. Differences stem from the
asset being restored.

Scenario: keeping the variability model in sync The variability model can
hold a set of dependencies/constraints among its features. It is not enough to
detect that some of these dependencies no longer hold. The triggering change
should be followed by restore actions such as deleting a feature’s children, or
removing a cross-tree constraint. Guo et al. [GWTB12] introduce a tool to assess
those actions for cardinality-based feature models. Dhungana et al. [DGRN10]
introduce a tool to propagate changes between fragments of Decision-Oriented
variability models.

However, keeping the variability model in sync is not limited to the variability
model itself. It might also impact product configurations, which were set in terms
of the variability model which is now being updated. Unlike the previous case,
now restore actions are not taken at the time the variability model changes but
rather, it is up to product engineers to decide when it is the right moment for
products to be upgraded. This decoupling requires of a variability model change

69

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

log. This log records who made what at when to the variability model. Based
on this log, product engineers can adapt product configurations at the time that
they consider most appropriate. Heider et al. [HRG12] tap on this log to assist
product engineers in setting some constraints to be followed when working out
the new product release w.r.t. the upgraded variability model. Gámez et al.
[GF13] consider this scenario for cardinality-based FMs. Constraint-compliant
configurations are obtained which might include new features in order to meet
the constraints (e.g., to satisfy a require dependency). Barreiros et al. [BM14]
face large FMs where the options to restore product configurations might be very
large. Authors introduce an algorithm based on the distance between the original
configuration and a potential repaired configuration akin to the upgraded FM. The
algorithm suggests those with the minimum distance. Finally, Hwan et al. [KC05]
also tackle change propagation but for staged configurations10.

The variability model might also be impacted by changes conducted down
in the SPL infrastructure. In the automotive domain, Holdschick et al. [Hol12]
consider how potential changes in the so-called functional model (e.g., deletion
of components, optional component becomes mandatory) need to be propagated
up to the variability model (e.g., reformulate relations with related features, split
features, etc).

Scenario: keeping architectures in sync Usually, product architectures are
first derived from the SPL architecture. From then on, both the SPL architecture
and the product architectures might evolve independently. Domain engineers can
extend the SPL scope and upgrade the SPL architecture accordingly. Likewise,
product engineers might be forced to make changes to products architectures
to ensure accurate and responsive customer service [CN01a]. Temporary
deviations between the SPL and product architectures are allowed, but periodic
synchronizations might need to be performed. Notice that the triggering change
might come from either the domain realm or the product realm.

If the change originates in the SPL architecture (i.e. the domain realm), then
products might benefit from including the new enhancements in the next product
release. To know how a product architecture should be updated, architectural
traces (i.e., those that trace elements from the SPL architecture to products)
become vital to determine what to merge. Michalik et al. [MWB11] seek
to abstract the level at which this process is conducted. Although SPLs tend

10Staged configuration is a process whereby product configurations are arrived at in stages. At
each stage some feature choices are made.

70

Chapter 2. Mapping Software Product Line Evolution

to describe their architecture through a model, this is not always the case for
products where the architecture might be hidden within the code assets. This
leads Michalik et al. to follow a modernization approach where the product’s
architecture model is first obtained from the product’s code; next, this model
is enhanced from the improvements conducted in the SPL architecture model;
and finally, the so-obtained enhanced model is mapped back to code. The
enhancement stage is conducted by comparing the current product’s model and
the SPL architecture model. These differences will lead product engineers to
manually update products.

If the change originates in the product architecture, domain engineers might
consider the change of interest for the entire SPL organization. Again, this process
is decoupled, i.e., domain engineers do not consider product changes at the time
the change happens, but at a later time in accordance with their roadmap. This
begs the question of how engineers cherry-pick the interesting changes from the
distinct ones the product suffers from the last milestone. Chen et al. [CCG+03] tap
into the product’s version. First, domain engineers look at the product’s version.
Second, two versions are selected that isolate the change of interest. Second,
differences are obtained. Third, these differences are accommodated into the SPL
architecture through an ad-hoc algorithm. Unfortunately, the interesting change
does not always correspond to one of the product’s version. It might well be the
case that interesting changes are scattered across different versions. This might
substantiate the effort of Shen et al. [SPZZ10] to detect interesting changes from
the differences between the current product architecture (no matter the number of
releases it has suffered) and the current SPL architecture. Once differences are
worked out, domain engineers pick those of interest, and merge then back to the
SPL realm.

Scenario: keeping code assets in sync Previous scenario looks at
synchronizing architecture assets. Now, we tackle a similar scenario but for
code assets. The difference stems from synchronization to be achieved not just
between assets but asset versions. Versions introduce variability in time: the
very same asset might be available along different versions. This means that
products are derived from asset versions, not just assets. The very same core-asset
might be included in different products but at different stages of its life-cycle (i.e.
different version numbers). Hence, versioning becomes a main synchronization
factor. This moves us to VCSs. VCSs are designed to keep track of who did
what and when. Broadly, VCSs support “revisions”, i.e. a line of development

71

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

(a.k.a baseline or trunk) with branches off of this. The branching model defines
the strategy for branching off, and merging back [WS02b]. Studies differ in the
kind of product derivation process being addressed: clone-based and composition-
based.

For clone-based, each product has its own repository. Several authors
argue about the benefits of an integrated platform where cloned variants could
be managed. Specifically, both Rubin et al. [RKBC12] and Antkiewicz et
al. [AJB+14a] propose conceptual operations and discuss VCS implications to
manage the synchronization of clones. An industrial experience on managing
clone-based SPLs is later conducted by Rubin et al. [RCC13]. Authors
conclude that an efficient management of clones relies on not only improving
the maintenance of existing clones, but also refactoring clones into an SPL
infrastructure. From a technical perspective, McVoy [McV15] introduces
new VCS operations suited for BitKeeper, which enables opportunistic reuse
and synchronization at component-level. Notice that in clone-based SPLs,
propagation takes place at the level of products in the absence of a proper SPL
infrastructure.

By contrast, composition-based SPLs derive products out of core-assets.
In a VCS setting, the SPL comprises: one SPL repository where to keep
core-assets, and distinct product repositories where to keep single products.
Product repositories are derived from SPL repositories. A link between both
repositories makes change propagations possible. Thao et al. [TMN08] present
a home-made VCS tuned for component-based SPLs. Here, special branches
inside the SPL repository, keep the SPL repository connected with product
repositories. Whenever a product repository is derived, a special branch is
automatically created in the core-asset repository, aimed for change propagation.
Specifically, the special branch references the product repository’s trunk. This
branch works like a mirror: if domain engineers merge changes from the
SPL repository main development trunk to the the special branch, the product
repository will automatically get these updates. Anastasopoulos [Ana09] and
Dhaliwal [DKZH12] differ from the previous studies in keeping both SPL
assets and product assets in the very same repository. For Anastasopoulos
[Ana09], the vision is realized for the Subversion VCS. Engineers can perform
activities related to evolution such as creating change requests for a given core-
asset, knowing if product assets are in sync with core-assets’ latest versions,
and propagating changes between core-assets and products. Diff operations
are used to highlight the differences between core components and product
components so that differences can later be merged into a product. However,

72

Chapter 2. Mapping Software Product Line Evolution

integrating changes from the core-asset branch into product branches is not
always easy. When the core-asset branch holds commits related to more than
one change request (e.g, adding a new feature, updating a existing one, etc),
developers need to selectively cherry-pick the commits related to the change to
be integrated. Commonly, change-request tracking system (e.g., Jira) are used
to keep the links between change requests and commits (e.g. a new feature f is
implemented in commits c1, c2 and c3). This way, product engineers select the
change request they want to integrate into their products, and all the commits
related to the change request are merged into the product branch. However,
developers need to perform these tasks manually. This is error-prone and time-
consuming. Dhaliwal et al. [DKZH12] provide algorithms to identify commit
dependencies and create groups of dependent commits that should be integrated
together. Authors propose algorithms to automatically determine dependencies
among the commits by analyzing dependencies among change requests (in Jira),
structural and logical dependencies among source code elements, and the history
of developers’ working collaborations (in Git).

Scenario: keeping feature mappings in sync Change propagation frequently
requires a trace infrastructure to ascertain impacted assets. This infrastructure
should also be upgraded. To this end, Seidl et al. [SHA12] introduces re-
tracing operations, e.g. if class C is deleted, so should it be feature mappings
that contain class C, provided domain engineers approve it. When feature traces
are not specified into a separate asset but are embedded into code (i.e., feature
annotations), Ji et al. [JBAC15] present nine patterns for co-evolving code assets
together with their embedded annotations. Finally, Passos et al. [PGT+13] inspect
the Linux kernel evolution history over four years to identify twelve patterns.
These patterns cover how variability changes affect both feature-to-code mappings
(specified through Makefiles) and source code embedded variability annotations
(C files with annotated ifdef clauses). For instance, if a new optional feature is
added, the pattern instructs engineers to add variability annotations into the source
code, as well as to extend Makefiles to include the new feature definition.

2.5.4 Verify change
Once changes are conducted, the SPL needs to be revalidated to ensure that the
SPL integrity has not been compromised (e.g. through regression testing). The
issues are the specifics brought by the SPL assets and scalability. Rather than

73

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

repeating all tests for each new release (should this be of the feature model, a
core-asset or a product), authors strive to find ways that scale to large SPLs to
verify that the changes did not have inadvertent effects.

This subsection aligns with the mapping study on consistency checking
presented by Santos et al. [SdOdA15]. The results are quite similar, though here
we include a detailed description of the studies that is missing in Santos’ et al.

2.5.4.1 Inconsistency detection

Inconsistency detection checks whether SPL assets are kept in a consistent state.
The answer is basically “yes” or “no”. Studies differ in the asset being checked.

Inconsistency detection for the variability model Quinton et al. [QPB+14]
address consistency for cardinality-based feature models. Authors discuss about
common changes and the resulting inconsistencies. A tool supports designers in
assessing the where, the why and the what of the inconsistency. For decision-
oriented variability models, Vierhauser et al. [VGH+12] build a consistency
checking framework where developers are given feedback about the constraints
being violated at runtime (between the variability model and the code). However,
changes in the feature model percolate down to the SPL, and hence, consistency
checking should be extended to other assets, specially, product configurations.
For instance, promoting a feature from optional to mandatory turns those
configurations that do not included the upgraded feature, inconsistent. Besides
product configurations, feature traces (i.e., those that link features to their code
realization) are also likely to be affected. Consider a product configuration p1
with features f and g, being class F and class G their code realization, respectively.
Now, f is extended with an optional child (e.g., feature h) together with its
corresponding code assets (e.g., class H). If class H is next inattentively mapped
to feature f (rather than h), then product p1 will no longer deliver the expected
behavior. Study [BTG12] devise tools to check whether the behavior of already
existing products configurations is preserved upon feature changes. In the same
vein, Borba et al. [TABG15] provide a theory about behavior preservation in SPLs
upon feature changes. This study is later extended for multi-product lines (i.e.,
independently-developed SPLs that are later integrated) [TBG15]. Finally, Jahn et
al. [JRG+12] develop a consistency checker to detect inconsistencies for decision-
oriented variability models w.r.t the SPL architecture model. When engineers
change the code assets (e.g., new components are added), the SPL architecture
is automatically updated. The tool raises warnings about any inconsistency

74

Chapter 2. Mapping Software Product Line Evolution

between the variability model and the SPL architecture. The tool further suggest
the engineer how to resolve such inconsistencies by proposing changes to the
variability model (e.g., a new feature should be added).

Inconsistency detection for the SPL architecture Different means are
proposed in this item: regression testing, functional tests and architecture
evaluations. Regression testing for SPL architectures, checks if new defects are
introduced into a previously tested architecture. Neto et al. [ddC+12] apply
regression testing in two scenarios: corrective changes and perfective changes.
Sales et al. [SC11] resort to JUnit tests to detect violations of design rules
during SPL evolution. Alternatively, studies Knodel et al. [KMNL06] and
Duszynski et al. [DKL09] use architecture evaluations, i.e., the comparison of
an architectural model with its source code counterpart. Possible outputs include:
the architectural element converges (if it exists in both the architecture and the
source code), the architectural element diverges (if it is only present in the source
code) or the architectural element is absent (if the element is only present in the
architecture). Next, architects can interpret the results based on the total numbers
of convergences, divergences and absences. Finally, Knodel et al. [KMNL06]
illustrates how this output is used to evaluate the SPL architecture consistency
between its design and the SPL code assets.

Inconsistency detection for products When new releases for code assets are
delivered, existing products might need to be accordingly upgraded. Due to
frequent upgrades, products might keep unnecessary assets (a kind of bloatware).
This superfluous code may be harmful in safety critical domains, hindering
runtime performance and smooth evolution. Demuth et al. [DLHE14] resort
to functional tests for ascertaining and eliminating the bloatware assets from
products, as well as for assuring consistency of products when code assets and
variability model evolves.

2.5.4.2 Scalable verification

SPLs might include a large number of assets. Lowering verification efforts
has to do with reducing the number of assets that need to be re-verified.
Approaches differ based on the verification mechanisms being used: model
checking, compositional reasoning and regression testing.

75

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Model checkers automatically verify if a system satisfies a given property. A
property can be concerned with safety or liveness of the program, such as the
absence of deadlocks, but also product-specific behavior can be checked (e.g., in
a coffee machine SPL, check that the total cost of a drink is always less than
2$). The system needs to be described in a formal notation (e.g. Petri nets,
state-transition diagrams). For large SPLs, Cordy et al. [CCS+12] resort to
incremental verification. Here, previous verification results are used to minimize
the re-verification effort. Specifically, authors try to determine if new added
features are conservative or regulative. A feature is conservative to a product
if it adds functionality to the product, without altering its previous functionalities.
Alternatively, a feature is regulative if it doesn’t add new functionality to the
product but “adapts” previous functionalities. When the SPL evolves and a new
feature f is implemented, knowing that f is conservative may drastically reduce
the number of new products to verify. For instance, any property violated by an
old product p is also violated by the new product p after f is added. Hence, if
p is known not to satisfy a property, then there is no need to check p again. The
scenario becomes more complex when a blend of both conservative and regulative
features are added simultaneously. Theorems are provided to determine which
subset of products can be left out for verification when such type of features are
introduced. Similarly, static analysis techniques are used by Sabouri et al. [SK14]
to determine which features affect which properties (a feature affects a property
if it can make the property valid/invalid). In this way, when the SPL evolves
(e.g., a feature is modified that adds/removes program statements), this technique
identifies the affected properties. Here, there is no need to re-verify the properties
that are not affected by the statement added/modified.

Berezin et al. [BCC98] introduce so-called “assume guarantee reasoning”, a
compositional model checking approach that verifies each component separately.
It is based on decomposing the system specification into a set of properties each of
which describes the behavior of a system’s subset (i.e., components). Components
are annotated through an assume-guarantee pair. Assume describes the properties
for the correct functioning of the component. Guarantee denotes properties
satisfied by the component provided the assume clause is met. A component’s
assume may depend on other component’s guarantee. This approach is taken
by Beek et al. [tBMP12], where the SPL architecture is denoted as a set of
components chained by assume-guarantees. When a component implementation
changes, its assume-guarantees may change as well. If stable (the assume-
guarantee pair did not change), products that reuse the component don’t need
to be tested again.

76

Chapter 2. Mapping Software Product Line Evolution

Similarly, Rumpe et al. [RRSW] resort to a component compatibility
approach, based on pair-wise model checking. If a new component version
is compatible with the previous version of the products’ component, it could
be safely replaced. Finally, commonalities and similarities between products’
configurations can be analyzed to additionally narrow the set of products to
be tested. The idea is to determine a minimal set of products such that the
successful verification of such a small set implies the correctness of the entire
SPL. Scheidemann et al. [Sch06b] present an algorithm for this matter.

Regression testing is a type of software testing used to determine whether new
problems are the result of software changes (refer to Engstrom et al. [ER10] for an
survey for single product regression testing practices). The new twist brought by
SPLs is that tests can also be core-asset and hence, subject of reuse. For instance,
Lity et al. [LLSG12] use model-based testing in delta-oriented SPLs. When a
new product is created, the commonalities with existing product configurations is
ascertained, and test assets are automatically derived for the brand new product.
In this way, product testing is given a head start.

2.6 Analysis of the results
Though it was not the main driver of this research, we depict distribution of studies
over publication venues in Figure 2.5. The International SPL Conference (SPLC)
is the prime publication venue for SPL evolution research (28%). In 2005, the
SPLC committee decided to merge the SPLC with its European counterpart, the
Product Family Engineering (PFE) conference, so they are jointly visualized in the
chart. Next in the ranking is the Journal on Information and Software Technology
(IST) (8%), the International Conference on Software Engineering (ICSE) (7%),
the International Conference on Software Maintenance and Evolution (ICSME)
(%4), the Journal of Systems and Software (JSS) (3%), and the ICSE co-located
International Workshop on Product Line Approaches in Software Engineering
(PLEASE) (4%). The top ten is completed by the International Conference on
Software Maintenance and Reengineering (CSMR) (3%), the Journal of Science
of Computer Programming (SCP) (3%), the Working Conference on Software
Architecture (WICSA) (3%) and the International Workshop on Variability
Modeling of Software-Intensive Systems (VaMoS) (2%). The 25% of the
publications were unique in the venue they were published in. Figure 2.5 also
depicts the type of publication venue. Conference papers and Journals account for
the 68% and 19%, respectively, while workshops account for a 13%. These results

77

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

CONFERENCE	
68%	

JOURNAL	
19%	

Workshop	
13%	

SPLC&PFE	
28%	

IST	
8%	

ICSE	
7%	

ICSME	
4%	

JSS	
3%	

PLEASE	
3%	

SCP	
3%	

CSMR	
3%	

WICSA	
3%	

VAMOS	
2%	

2-entry	venues	
11%	

1-entry	venues	
25%	

Figure 2.5: Distribution of studies over publication venues: types (left) and
individuals (right).

align with the state of-the-art on SPL evolution by Botterweck et al. [BP14].
Specifically, the majority of the included papers by Botterweck et al. belong
to the SPLC (together with the ICSE). Additionally, we both agree on the low
numbers of both the International Conference on Software Reuse (ICSR) and the
Generative Programming: Concepts & Experience (GPCE) conference. Next, we
address each of the research questions.

2.6.1 RQ1: What types of research have been reported, to what
extent, and how is coverage evolving?

From the accumulated results shown in Figure 2.6, we observe that “Solution
proposals” (31%) is the most addressed category, followed by “Validation
research” (24%). As it can be observed, “Solution proposals” have been gradually
increasing over the years. “Evaluation research” accounts for a 19%, which
indicate the maturity level of the SPL evolution field. Specifically, “Evaluation
research” has been lately more increasingly conducted (from 2008 on). This
might indicate the SPL field becoming more mature within an industrial setting.
Additionally, “Validation research” (24%) studies conducted in academia still

78

Chapter 2. Mapping Software Product Line Evolution

1	 1	 1	 1	
3	

2	
1	

1	 3	
3	

1	

7	

2	

5	

6	

3	
1	

3	
2	

4	

1	

7	

1	

2	

4	

1	

2	

9	

3	

1	

6	

1	

1	

3	

1	

1	

5	

6	

6	

3	

0	

5	

10	

15	

20	

25	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Conceptual	 Evalua9on	 Experience	 Solu9on	 Valida9on	

Conceptual	
9%	

Evalua9on	
19%	

Experience	
17%	Solu9on	

31%	

Valida9on	
24%	

Accumulated	Results	

Figure 2.6: “Research type” over time.

need to find their way to industry. “Experience research” (%17) indicates
the commitment degree of industry to report “know how”, “open issues” and
“challenges behind”. A few conceptual works have also been addressed (9%),
which might indicate incipient challenges being addressed by the community.

From the stacked bar chart, we see a peak of contributions reached in
201211. This peak aligns with other SPL related systematic reviews, which have
also identified a global maximum in 2012 [SdOdA15, TAK+14]. Santos et al.
[SdOdA15] found also a global maximum with 7 studies (the 29%), while the rest
of the years had less than the half of the studies found during 2012, except for
2010 (with 6 papers). Thüm et al. [TAK+14] also identify a global maximum
in 2012, with 27 papers. Regarding the evolution of the research, it comes as
no surprise that during the fist years (up to 2005) “Experience research” and
“Solution proposals” are the ones most addressed. From then on, we observe

11Notice that the survey stops at July 2015. One could postulate that a similar number of papers
could be published in the second semester of 2015.

79

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

1	 1	

3	

1	
2	

2	

1	

2	
3	

2	

4	

1	 1	

3	

10	

1	

6	

2	

1	

2	

4	

8	

1	 1	3	

1	

2	

1	

2	

0	

5	

10	

15	

20	

25	

1994-2000	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Annota2on	 Clone	 Composi2on	 Model-driven	

Annota&on	
4%	 Clone	

7%	

Composi&on	
29%	

Model-driven	
15%	

NA	
37%	

Hybrid	
8%	

Accumulated	Results	

Figure 2.7: “Product derivation approach” over time.

a trend towards “Validation proposals” and “Evaluation research”. Nevertheless,
“Solution proposals” still are prominently addressed, which seems to indicate the
existence of SPL evolution challenges left to be accomplished.

2.6.2 RQ2: Which product-derivation approach received most
coverage, and how is this coverage evolving?

We are interested in assessing how the distinct product derivation approaches
are catching on (see Figure 2.7). These approaches might, for instance, impact
change implementation in so far as the structure and code assets might take
different shapes tuned for the variability implementation and product derivation
approach at hand. This in turn might affect how other activities are conducted
from implementing to propagating change. The 37% of the studies are not

80

Chapter 2. Mapping Software Product Line Evolution

reporting any specific product derivation approach12. The rest of the studies
consider either “Annotation” (4%) (e.g., #ifdef clauses), “Composition” (e.g.,
component-based approaches, AOP) (29%), “Model-driven” (15%), “Clone”
(7%) or “Hybrid” (8%) approaches. From the stacked bar chart, we can observe
how the most addressed one is composition-based, with a share of 29%. This is
at odds with the annotation approach being the most widely reported in industry
[GLA+09, JB09, PO97, TSSPL09]. This can be due to composition approaches
being proposed to overcome the difficulties that annotation-based approaches face
when evolved in the large [EBN02, Fav97, KS94]. Interestingly, we can observe
an incipient interest on both “Annotation” and “Clone” approaches since 2012
with a share of 4% and 7%, respectively. Although they have been criticized due
to its lack of modularity, these approaches have being the subject of recent efforts
to overcome this limitation.

2.6.3 RQ3: Which kind of SPL asset received more attention
and how is this attention evolving?

From the accumulated results in Figure 2.813, we notice that both the variability
model (30%), and the code assets (30%) are the artefacts most addressed. This
stems from the way we classified studies. Although studies might deal with
distinct SPL assets (e.g., feature-to-code mappings, test assets, etc), here we are
interested in the assets that first evolve (“the subject of evolution”), rather than
those assets that evolve as a result of the evolution of other assets. The latter
assets are not computed into this facet.

“Code assets” account for 30%. Note that this category also includes models
as the code counterpart in model-driven SPLs. Regarding the evolution over time,
“SPL architecture” received more attention during the first years. This aligns
with the findings of Heradio et al. [HPMFA+15]. On the other hand, products
lag behind other assets as for attention received (13%). Though some proponents
regard products to be derived on the fly from core-assets, the current state of affairs
is that products are still in need of being customized, and hence, having a detached
life-cycle from the SPL.

12This includes studies on external forces (for “Identify change”), variability-model analyses,
metrics and negotiation processes (for “Analysis and plan change”), and change synchronization
outside code assets (for “Implement change”) and inconsistency checking of variability models
(for “Verify change”).

13“NA” (9%) refer to studies that consider no asset (e.g., a requirement prioritization algorithm
[IKH14], monitoring the SPL environment to identify new needs [Böc05], etc).

81

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

2	
1	

5	

1	 1	

4	

9	

1	

6	

3	

2	

3	

1	

1	

4	

2	

1	

1	

6	

3	 1	

2	

4	

2	

2	

1	

2	

1	

2	
1	

2	

10	

8	

4	

3	

0	

5	

10	

15	

20	

25	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Code	assets	 Products	 SPL	architecture	 Variability	model	

Code	assets	
30%	

NA	
9%	

Products	
13%	

SPL	
architecture	

18%	

Variability	
model	
30%	

Accumulated	results	

Figure 2.8: “Asset type” over time.

82

Chapter 2. Mapping Software Product Line Evolution

2	
1	

2	
1	 1	

1	

2	

5	
2	

2	

4	
8	 6	

4	
2	

7	

2	
2	

4	

1	
3	

4	

11	

5	

7	

4	

2	

1	

7	

3	

3	

0	

5	

10	

15	

20	

25	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Iden1fy	change	 Analyze	and	Plan		 Implement	change	 Verify	change	

Iden1fy	
change	
6%	

Analyze	
and	Plan		
37%	

Implement	
change	
43%	

Verify	
change	
14%	

Figure 2.9: “Evolution activity” over time.

2.6.4 RQ4: Which activities of the evolution life-cycle received
most coverage and how is this coverage evolving?

Figure 2.9 depicts the rate for each evolution activity. Note that it is possible
for a paper to be categorized into more than one activity. This happens in
eight cases which explains why the total amounts goes up to 115. From the
accumulated results, we observe that “Implement change” (43%) and “Analyze
and plan change” (37%) account for more than half of the studies. Conversely,
“Identify change” and “Verify change” lag behind with a rate of 6% and 14%,
respectively. These differences might be partially explained by SPL challenges
being more related to analysis and implementation, while change identification in

83

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

1	 1	

1	

1	
2	

1	

1	

1	

3	

5	

2	 2	 2	

4	

1	

2	

2	

1	
2	

1	

2	

3	

1	

2	

2	

1	

1	

1	

4	

1	

1	

2	

1	

1	

3	

1	

3	

1	

1	

1	

1	

2	

1	
2	

1	

2	

1	

1	

2	

2	

6	

3	
2	

3	

1	

1	

4	

2	

2	

1	

3	

1	

1	

0	

5	

10	

15	

20	

25	

30	

1994-2005	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	 2015	

Iden1fy	change	 Change	Impact	 Decision-making	

Planning	 Built-for-change	 Built-with-change	

Change	synchroniza1on	 Inconsistency	detec1on	 Scalable	verifica1on	

Iden1fy		
change	
6%	

Change	Impact	
14%	

Decision-making	
17%	

Planning	
6%	

Built-for-change	
15%	

Built-with-
change	
9%	

Change	
synchroniza1on	

19%	

Inconsistency	
detec1on	

9%	

Scalable	
verifica1on	

5%	

Accumulated	results	

Figure 2.10: A finer-grained classification for SPL “Evolution activity”.

SPLs exhibits some resemblance with single-product engineering. The stacked
bar chart shows a sustained interest in “Implement change” and “Analyze and
Plan change” over the years, while “Verify change” has recently received more
attention.

So far, activities are those of Yau’s change mini-cycle [YCM93]. This mini-
cycle applies to any software artefact. However, we wanted to zoom into the
specific sub-activities SPL practitioners cared about. Based on the mapping of
primary studies conducted in Section 4, we refined Yau’s model along nine sub-
activities (see Figure 2.4). Next subsections provide a finer-grained analysis of
those sub-activities.

84

Chapter 2. Mapping Software Product Line Evolution

Conceptual Experience Solution Validation Evaluation ProductVariability
model

SPL
architecture

Code
asset

Not
applicable

Analyze and plan change

Change
Impact

2	 3	 3	 7	 1	

3	 3	 6	 4	 3	

3	 2	 2	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

Serie1	

6	 3	 9	 3	

3	 2	 10	 1	 6	

2	 2	 3	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

Serie1	Decision-
making

Planning and
roadmapping

Research
typeAsset

type

10 61

3 79

3

6

2 2

2

3

6

3

3 3

3

3

3

2

3

2 2

4

1

Figure 2.11: Mapping “Analyze and plan change” across facets “Asset type” and
“Research type”.

2.6.4.1 Zooming into identify change

Figure 2.10 highlights this activity as being the less addressed: seven studies.
Among the different forces of change, product engineering is the force
more broadly addressed [CKM+08, MBKM08, CCJM12], including customers’
changing needs [SK01, VDJ10]. This might be so, due to the fact of SPL
products being amenable to be promoted as core-assets, a distinctive aspect not
applicable to single systems. On the other hand, the forces of change exerted by
domain engineers are not so different from those found in single systems, hence,
introducing less novelty. This likeness might also explain the sole existence of a
study looking into “the SPL environment” (i.e. competitors, market research and
technology forecasts) as a driver for SPL evolution: [Böc05].

2.6.4.2 Zooming into analyze and plan change

Figure 2.10 depicts how “Decision-making” (17%) has received more attention
that its siblings “Change impact” (14%) and “Planning” (6%). This might stem
from SPLs bringing a new range of decisions concerning how assets evolve along
the re-use spectrum. For these sub-activities, we are interested in finding what is
the focus (i.e. facet “Asset type”) and maturity (i.e. facet “Research type”). To
this end, we crossed the activity dimension with these two facets. Figure 2.11
depicts the outcome.

Impact analysis. Maturity level of CIA reveals that proposed techniques are
mostly validated within academic case studies or experiments conducted in labs.
These studies have mainly considered “Code Assets” and “Variability models”
as the evolving assets. Products lag behind. This might evidence that academia
barely considers product-specific changes which is at odds with common practice

85

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

in industry [RDG+07].
Decision making. At first glance, figures suggest this to be a rather

mature area with three studies reaching the evaluation stage. However, this first
impression should be contrasted against the kind of artefact being addressed.
“Variability model” is the most tackled asset with nine studies. This might
well stem from the formality brought by variability models that facilitates formal
reasoning. However, other assets are largely overlooked. Specifically, the decision
about product specifics being promoted to SPL core-assets, has not received so
much coverage despite being common in industry [RDG+07]. This is an area
that presumably will receive more attention in the future, specially if clone-based
SPLs take off.

Planning and road-mapping. Studies seem to rely on industrial experiences
to find evidences about how companies schedule and plan releases for SPLs.
Variability models and the SPL architecture are the chosen artefacts for this kind
of studies.

2.6.4.3 Zooming into implement change

Figure 2.10 places “Change synchronization” (19%) as the most covered activity,
ahead of “Built-for-change” (14%) and “Built-with-change” (9%). Next, we
analyze each sub-activity w.r.t. asset focus and maturity (see Figure 2.12).

Built-for-change. It comes as no surprise that code-artefact realization is by
far the largest studied asset. It also stands out the comprehensive extent at which
these studies have been conducted with nine studies reaching the evaluation stage.

Built-with-change. This sub-activity seems to mainly rely on “Solution
proposals”, and lacks empirical evaluation. Additionally, proposed approaches
mostly aid engineers on performing changes at architecture and code asset level.
Research on this field seems to underestimate product engineers when conducting
product-specific changes (one study).

Change synchronization. This topic is receiving a steady interest in the
last years. Special attention is devoted to keeping the SPL assets in sync along
all abstraction levels, as well as, to keep synchronized SPL core-assets and
product assets. Specifically, “Evaluation research” has focused on keeping the
variability model consistent with (smaller parts of) itself [GWTB12], and keeping
in sync core-assets and products [DGRN10, HRG12]. The latter calls for effective
configuration management approaches. We found several evidences at technical
level, i.e., VCSs. For code assets, the trend seems to be to adapt new generation
VCSs (e.g., BitKeeper, Git) to SPL’s. However, we found neither experiences nor

86

Chapter 2. Mapping Software Product Line Evolution

11	 6	 1	

5	 4	 1	 1	

10	 3	 10	 8	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	Conceptual Experience Solution Validation Evaluation ProductVariability
model

SPL
architecture

Code
asset

Implement change

Asset
type

Built-for-
change

5	 2	 10	

1	 7	 1	 1	

3	 2	 7	 7	 3	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

Research
type

Built-with-
change

Change
synchronization10

5

11

4

3

6

10 8

1

1

1

3 2

1 1 1

3

5

7

7

7

2 10

Figure 2.12: Mapping “Implement change” across facets “Asset type” and
“Research type”.
practices regarding how configuration management is achieved in industry.

2.6.4.4 Zooming into verify change

Figure 2.10 gives a rough total for the sub-activities “Inconsistency detection”
and “Scalable verification” of 9% and 5%, respectively. Mapping with the other
dimensions indicates an evenly distribution of the studies w.r.t. both asset type
and research type (see Figure 2.13).

Inconsistency detection. Regarding the asset type, the variability model
is the most addressed, presumably due to its readiness to formal reasoning.
Specifically, Feature models are the favorite notation as opposed to Orthogonal
Variability models, Decision-Oriented Variability models, or Cardinality-based
models. Moreover, more than half of the studies include either validation or
evaluation.

Scalable verification. Model checking is by far the most reported approach,
and approaches to reduce re-verification effort upon changes, specially, on
variability models and SPL architectures. Research in this field looks to be less
mature compared to its sibling “inconsistency detection”. This might be due to
the difficulties in finding industrial cases where to test out the approaches.

2.7 Summary of the results
This Chapter presented the results of a mapping study on SPL evolution. In
total, 107 articles were included in this mapping study from 1994 to mid 2015.
The aims were (1) to provide a consolidated overview on “SPL evolution”, and
(2), to identify well-established topics, trends and open research issues. As for

87

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

1	 3	 4	 2	

1	 3	 2	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	

6	 2	 7	 2	

2	 3	 3	 1	

0	

1	

2	

3	

4	

0	 1	 2	 3	 4	 5	 6	Conceptual Experience Solution Validation Evaluation ProductVariability
model

SPL
architecture

Code
asset

Scalable
verification

Inconsistency
detection

Verify change

Asset
type

Research
type

13

7

2

6

3

2 2

1

1

3

3

2

24

Figure 2.13: Mapping “Verify change” across facets “Asset type” and “Research
type”.

the first goal, we described the SPL specifics and their impact on the traditional
software change mini-cycle proposed by Yau et al. [YCM93]. On these grounds,
we further elaborated on this mini-cycle, and classified the literature accordingly.
This permitted a finer grained classification of studies. The answers to the research
questions of our mapping study are summarized below.

RQ1, Research type. Solution papers are the most common type of
contribution (31%), followed by “Validation research” (24%). Nevertheless, a
tendency can be observed towards more evaluation and validation papers. The
area reaches a peak in 2012 with 25 papers, and it maintains a steady contribution
of around 10 papers a year. Four main conferences stand out as the main venues,
though SPLC takes the lion’s share with a 28%. Surprisingly, the number of
“Experience papers” is rather limited (17%) which contrasts with the increasing
use of SPLs in industry [Sav14]. A plea is then for practitioners to report their
SPL evolution efforts, rather than reporting only SPL adoption effort. This would
certainly be a spur for the whole field.

RQ2, Product derivation approach. Efforts go as follows: “Annotation”
(4%), “Clone” (7%), “Hybrid” (8%), “Model-driven” (15%), and “Composition-
based” (29%), the later specially for component-based SPLs. Studies on FOP,
AOP or DOP took the form of academic evaluations aiming at proving their
resiliency upon SPL evolution. No evidences were found on the applicability
of these approaches in an industrial setting. Interestingly, we observed a recent
interest in both “Annotation” and “Clone” approaches since 2012 on. Since, both
annotation and clone-based SPLs are the approaches widely used in industry,
this interest might be interpreted as the research community making the effort
to provide means for SPLs in industry.

RQ3, Asset type. Basically, all assets received coverage: variability model
(30%), SPL architecture (18%), code assets (30%) and SPL products (13%).

88

Chapter 2. Mapping Software Product Line Evolution

Products lag behind other assets as for attention received. This is bad news for
SPLs evolving following a grow-and-prune model. Though some proponents
regard products to be derived on the fly from core-assets, the current state of
affairs is that products are still in need of being customized, and hence, having
their detached life-cycle from the SPL. This advices for products to be kept in the
radar of SPL evolution.

RQ4, Evolution Activity. The least addressed topic is “Identify change”
(%6), followed by “Verify change” (14%). On the other hand, “Analyze and plan
change” and “Implement change” have received significantly more attention (37%
and 43%, respectively). A finer-grained analysis uncovered some tasks as being
underexposed, namely, (1) decision-making on whether product specifics should
be promoted to SPL core-assets; (2) change impact analysis upon architectural
changes; (3) inconsistency detection for assets other than variability models.
“Document change” was left out since no study was found on this activity.

2.8 Conclusion
From the results of this systematic mapping, we can observe that SPLs have
received considerable attention by the Software Engineering community, with
conferences fully dedicated to this topic. The increasing focus on evolution
might be a symptom of maturity where SPL solutions start being tested out.
Nevertheless, we have spotted how the SPL research community has left products
behind when considering SPL evolution. This means that little support is given for
incrementally evolving SPLs from product development. This is unfortunate since
capitalizing on the changes that happen at the product level becomes vital during
the initial phases of the SPL life-time. As shown in Chapter 1, at these initial
phases, commonly the SPL core-asset base does not fulfill all the requirements
needed by products, and hence, products need to customize the core-assets, as
well as, create brand new assets in order to develop the “remaining” requirements
themselves. In this context where both core-assets and products need to co-evolve,
the SPL evolution is governed by pruning seasons, where product functionalities
deemed useful are promoted to core-assets. Specifically, means are required to
help SPL engineers:

• identify and analyze how products have changed the core-assets after they
were derived from the SPL core-asset base,

• propagate product customizations to the SPL core-asset base, and vice

89

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

versa.

This thesis aims at addressing both gaps. The next two chapters delve into each
of the issues.

90

Chapter 3

Analyzing product customization

3.1 Overview

The previous Chapter presented a mapping study on SPL evolution research.
We saw how the existing research does not sufficiently address the issue of co-
evolving both core-assets and products. In such SPLs, evolution is driven by
new functionalities implemented in products, and these need to be identified and
analyzed in order to elucidate which ones to promote.

In this Chapter1, we explore how to aid SPL engineers on “customization
analysis”, i.e. analyzing how products have changed the core-assets they were
derived from. Customization analysis is intended to help SPL engineers identify
interesting customizations to be promoted to reusable core-assets for the next
core-asset release. Deciding when and what should go into the next SPL release is
far from trivial. A main decision-making input is the effort that has been put into
product customization. We propose the use of data warehouses to analyze this
customization effort. Requirement analysis, dimensional modeling and reporting
tools are discussed in Sections 3.5, 3.6, and 3.7, respectively. As a proof-of-
concept we developed CustomDIFF, a data warehouse tool that uses Git as the
operational system and pure::variants as the SPL framework. An 8-minute video
showing CustomDIFF highlights is available at https://tinyurl.com/ycjhwzpc.
This research has been motivated and validated in the context of the Danfoss
Drives, a SPLC-awarded hall-of-fame company [Dan].

Next Section provides the problem definition.

1The content of this Chapter has partially been published in [MDA17].

91

https://tinyurl.com/ycjhwzpc

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure 3.1: Depicting the problem definition for customization analysis with a
mind map. Interact with it online at https://tinyurl.com/yay46us8.

3.2 Problem definition

Development in application engineering should be avoided as far as possible, as
increases the complexity of SPL evolution management [Kru06]. Unfortunately,
companies cannot always avoid it. Different reasons why products need to
be adapted after being derived from the SPL release have been reported by
the industry: to meet changing products’ deadline & budget [DSB05, Jen07,
Sch06a], to expedite bug-fixes when close to a release [FSK+16], to speed up
unexpected functional changes in customers needs [NNK16, CKM+08, IMY+16],
to decrease reusable asset complexity with single-product needs [DSB05, KH12,
BB11], and specially, during the first stages of an SPL, where an initial
partial SPL does not provide the 100% functionality required by the products,
application engineering teams need to develop the “remaining” functionalities
themselves [JB09, KST+14, TFC+09]. We refer to this development as “product
customization”.

Following the grow-and-prune model, product customization (i.e the growth)
needs to be cleaned up by merging and refactoring (i.e. pruning) [FV03]. The
pruning requires SPL engineers to analyse how core-assets are being customized,
i.e. looking at the difference between core-assets and namesake assets once
customized by products. In this context, a new range of concerns arise: how
much effort are product developers spending on product customization?; how and

92

https://tinyurl.com/yay46us8

Chapter 3. Analyzing product customization

which customizations need to be promoted to the core-asset base?; which are
the most customized core-assets?; to which extent is the core-asset code being
reused for a given product?; etc. We refer to this endeavor as “customization
analysis”. Customization analysis is intended to help engineers plan the next
SPL release according to products’ needs. Evidences from industry revealed
that customization analysis is periodically performed by domain experts, which
inspect the source code versions looking for any functionality deemed useful.
Below are two excerpts from two different industrial case studies:

“You must carry out such an effort with the support of the best
domain experts of the system. Domain experts are required because
only they understand the subtle differences between code unit

versions and the needs of the users as they evolved historically, so
are best equipped to prune and consolidate”. [FV03]

“... all required changes during product derivation are handled
through product specific adaptation. Periodically, the functionality

that is deemed useful for the product family is incorporated in the
family assets.” [DSB05]

Traditional DIFF utilities might help to see the differences between the core file
and the same file once customized by a product [SSRS16]. However, this one-
diff-at-a-time approach can hardly scale up to SPLs, where both products and
core assets can easily account for hundreds of files. Needed are mechanisms
that move from code-level DIFF to assessing differences at higher abstraction
terms: features and products. Rather than DIFF(aFile, aFile), we long for
DIFF(aFeature, aProduct) utilities that encapsulate the scanning of potentially
hundreds of products for all the files a given feature has an impact upon. This
involves gathering data from thousands of DIFFs. But this is just raw data that
needs to be cleaned-up and aggregated in meaningful analysis terms. Due to this
issue the following problem arises: analyzing how products customized core-
assets is time-consuming and error-prone.

Refer to Figure 3.1, which depicts the problem definition as a mind map, and
outlines the causes and consequences of the problem. Refer to Chapter 1 for a
detailed description on the root-cause analysis of the problem (i.e. cause and
consequences of the problem). The reader is encouraged to interact with the mind
map at https://tinyurl.com/yay46us8. The nodes can be unfolded to uncover the
supporting evidences for each of the claims.

93

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Fortunately, mechanisms already exist that help: data warehouses. Data
warehouse (DW) is a collection of decision support technologies, aimed at
enabling knowledge workers to make better and faster decisions [KR02].

In this Chapter we study the use of DW for customization analysis.
Specifically, our work elaborates around three main research questions:

• RQ1: Which are the information needs for customization analysis? How
much time is needed to get these information needs?

• RQ2: To what extent can previous information needs be satisfied through a
data warehouse? If so, what would its Star Schema look like?

• RQ3: How can customization analysis be visualized?

This work aims at contributing to the previous research questions as follows:

• RQ1. We introduce a set of questions that might arise during "feature
evolution" and "product evolution". The importance and required time to
answer to these questions is addressed through a questionnaire delivered to
SPL practitioners (Section 3.5),

• RQ2. We develop CustomDIFF, a DW approach that uses Git as the
operational system from where fact data is obtained, and pure::variants as
the SPL framework (Section 3.6),

• RQ3. We resort to Alluvial diagrams to visualize the customization effort at
a glance. These diagrams are a type of flow diagrams. Here, the flow stands
for the customization effort that goes from core-assets to SPL products
where customization was needed (Section 3.7).

Next Section illustrates the challenge with a motivating scenario.

3.3 Motivating scenario
As an example, consider the WeatherStationSPL, an SPL for building web-based

applications for weather stations. We borrow this example from the experimental
material provided by pure::variants, a well-known industrial tool for developing
SPLs [pur]. Figure 3.2 depicts a certain stage in the WeatherStationSPL journey.
So far, this SPL has undergone two core-asset baseline release at the master
branch, i.e ,Baseline-v0.5 and Baseline-v1.0. The latter holds seven features

94

Chapter 3. Analyzing product customization

Figure 3.2: WeatherStationSPL branching model: the master branch holds the
core-assets baselines from where SPL products are branched off.

Figure 3.3: Sensors.js core-asset at Baseline-v1.0. The snippet shows two
variations points. VP1 applies when either WindSpeed or AirPressure are selected.
VP2 applies for Temperature. Notice how VP2 is scoped within VP1.

95

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Parent
Feature

Feature Description

Sensors
AirPressure The weather station system measures the air pressure and displays in a

pressure gauge
Temperature The weather station system measures the air pressure and displays in a

thermometer gauge
WindSpeed The weather station system measures the wind speed and displays it in a

speed gauge

Warnings Gale The weather station alerts the user when the wind speed value surpasses
the maximum.

Heat The weather station alerts the user when the temperature value surpasses
the maximum.

Languages English The weather station front-end texts are available in English
German The weather station front-end texts are available in German

Table 3.1: WeatherStationSPL features at Baseline-v1.0.
realized through 30 code assets (see Table 3.1). Figure 3.3 shows a snippet of
the core-asset sensors.js. This snippet shows two variation points, i.e. VP-1
and VP-2. In pure::variants, a variation point starts with the opening directive
//PV:IFCOND, and ends with a closing directive //PV:ENDCOND 2. Hence, VP-
1 body comprises lines 24 to 49, whereas VP-2 expands along lines 30 to 46.

From Baseline-1.0, three products are branched off: productParis,
productBerlin and productNewYork. Let us consider that some urgent needs arise
that prevent customers from waiting to the next SPL release. This moves us to the
grow-and-prune process:

• Grow. Product specifics can be promptly considered in the products’
branches by adjusting core-assets to product specifics, delivering the new
product version on time (e.g. Paris-v1.0),

• Prune. During SPL consolidation, domain engineers prepare for the next
SPL release. Analyzing how core-assets have been used by products
becomes a main stepping stone in ascertaining reuse opportunities, and
deciding which feature upgrades are going to be supported in the next SPL
release.

The grow-and-prune is an evolution model, for moving SPL approaches from
a state S0 to a better state S1. This “better state” is to be (partially) obtained
out of product customizations that, independently of one another, have already
moved to a “better state” making the core-assets C0 evolve into customized assets
C1. Hence, pruning requires to analyse how core-assets are being customized,

2These variation point patterns only hold for code files. For example, in XML and HTML files,
variable elements are annotated in an attribute called condition.

96

Chapter 3. Analyzing product customization

Figure 3.4: Traditional DIFF visualization: differences of file sensors.js between
the one in the Master branch (core-assets) and the one in the productBerlin branch.

i.e. looking at the difference between core-assets (kept in the master branch)
and namesake assets once customized by products (kept in the product branches).
This is commonly performed one file at a time: diff(C0.file, C1.file). Back to the
example, Figure 3.4 illustrates the case for sensors.js using the DIFF utility in
the unified format [uni]. For each change hunk, the outcome indicates: the hunk
header (i.e. starting and ending line numbers together with the heading of the
function the change hunk is part of), the context (i.e. the three nearest unchanged
lines that precede and follow the change), the added lines (denoted by a plus sign
with a greenish background) and the deleted lines (denoted by a minus sign with
a redish background).

However, sensors.js is just one of the thirty files this SPL encompasses. And
this thirty files might potentially suffer changes by any of the three products. This
implies that domain engineers will potentially need to scan 30 x 3 DIFFs. Now
move to the Danfoss Drives SPL, which holds over 10,000 core-assets and 20
products. And this is just to get the raw data, i.e. the lines of code (LOC) that
have been changed. These LOCs need next to be cleaned-up and aggregated
in meaningful analysis terms (i.e. features and products). In short, manually
conducting DIFFs does not scale up. Fortunately, mechanisms already exist that
might help: data warehouses.

97

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

3.4 A Data Warehouse approach to customization
analysis

Data warehouse (DW) is a collection of decision support technologies, aimed
at enabling knowledge workers to make better and faster decisions [KR02].
Implementation wise, DWs are systems used for reporting and data analysis.
A main component is a central repository of integrated data from one or more
disparate sources (a.k.a the operational systems). They store current and
historical data in one single place that are used for creating analytical reports
for decision making. To this end, raw data is conducted through an Extract,
Transform, Load (ETL) process that ends up in the data being arranged along
facts (i.e. the aspects to be measured) and dimensions (i.e. the ways measures are
going to be broken down). The combination of facts and dimensions is called a
Star Schema that results from dimensional modeling.

Dimensional Modeling supports analysis of a process by modeling how it is
measured [KR02]. Here, the process to be measured is

the customization involved in tuning reusable artifacts for product
specifics.

This process it is to be measured through the number of lines of code (LOC) being
added/deleted. That is, LOCs are regarded as manifestations of the customization
effort. This data is to be obtained through the SPL’s Version Control System
(VCS) (e.g. Git), our operational system. Specifically, during the ETL process,
a DIFF is worked out between the namesake artifacts of the core-asset and the
product at hand. Differences stand for the adjustments (i.e. LOCs) introduced to
account for product specifics.

However, LOCs are too fine-grained, and fail to provide a holistic view of the
customization effort at a glance. This is when Dimensional Modeling comes into
play. File-based LOC changes are the finest grain of data but it can be rolled up to
various levels of dimensionality till reaching coarser grains, such as, “feature” or
“product”. In short, DW is the means to move from traditional diff(aFile, aFile)
to diff(aFeature, aProduct).

We fleshed out this vision through CustomDIFF, an ETL and visualization
tool for SPL customization analysis for Git as the operational system, and
pure::variants as the SPL framework. A video showing CustomDIFF at work
is available at https://tinyurl.com/ycjhwzpc. Next sections delve into
three key notions in DW projects: Requirement Analysis, Dimensional Modeling
and Reporting Tools.

98

https://tinyurl.com/ycjhwzpc

Chapter 3. Analyzing product customization

Increase
product
quality

<<Strategic>>

Determine which
customizations to

promote as core-asset

Analyze
customization effort

by feature

<<Decision>>

<<Decision>>

Analyze which products
are customizing a given

feature

<<Information>>

Analyze which features a
given product is

customizing

<<Information>>

Analyze
customization effort

by product

<<Decision>>

Analyze which features
are being customized by

which products

<<Information>>

Figure 3.5: Goal, decisions and information needs for customization analysis.
Notation along the profile introduced in Mazon et al. [MPT07] for DW
requirements.
3.5 Requirement analysis
As in all software projects, a critical phase in the DW lifecycle is the Requirement
Analysis phase. The predominant objective of this phase is to identify
organization goals and elaborate requirements that could measure organization
performance [AYD13]. Here, we resort to a goal-oriented approach described in
Mazon et al. [MPT07] where data needs are obtained out of organizational goals.
Specifically, goals are classified as strategic, decisional and informational. Next,
we apply this approach for the case of customization analysis (see Figure 3.5).
Other aspects of the SPL evolution process are outside the scope of this work.

Strategic goals. Strategic goals are thought as “changes from a current
situation into a better one” [MPT07] (e.g. “increase sales”, “increase number of
customers”). Their fulfillment causes an immediate benefit for the organization.
For SPLs, strategic goals can be reducing time-to-market, increasing product
quality, etc.

Decision goals. Strategic goals are detailed out into decision goals that are
more actionable (e.g. “open new stores”). For SPLs, strategic goals require of
an “updated core-asset base” that is periodically upgraded. In this setting, we can
make the decision to “determine which customizations to promote as core-assets”.

99

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

This decision might be refined by differentiating between two focuses:

• feature focus, when deciding when and what customizations are to be
included in the next SPL release. In Danfoss, a specific body exists (known
as the Change Control Board (CCB)) who decides the pace at which the SPL
evolves, i.e. which feature upgrades are to go into the next SPL release.

• product focus, to assess whether the importance of the customer or the
revenue coming from a product, might favor prioritizing the customizations
coming from a given product. In Danfoss, each product-development
project has its own committee that determines whether a request for
development will go to the CCB [DSB05].

The CCB synchronizes the requests from different projects and decides whether
and which of the requests will be honored. To this end, the CCB should balance
the upgrade costs (estimated development cost and developer agenda availability)
vs. the upgrade benefits (how many and which products will benefit from the
upgrade). In addition, upgrades might have different degrees of urgency from
as-soon-as-possible (e.g. bug fixes) to desirable (e.g. new fancy functionality).
Finally, and depending on the SPL size, feature management might be split among
distinct domain engineers. Each feature (or set of related features) is up to a
team which is in charge of coding, debugging and upgrading the features at hand
[DSB05]. Here, SPL engineers might need to track what, how and where have
products changed "their" features. This moves us to the information goals.

Information goals. These goals aim to capture which specific information
could help to obtain the strategic goals. As for the customization effort, two
main variables are involved: features and products. This permits to tackle the
analysis through a three-fold perspective: (1) holistic (e.g. which features are
being customized by which products); (2) feature-focused (e.g. for a given
feature, which products are customizing it); and (3), product-focused (e.g. for
a given product, which features were necessary to customize). In addition, the
customization effort admits different levels of granularity: the artefacts being
affected by the customization effort (#); the number of lines of code (LOC)
involved in the customization; or the code itself that supports the customization.

These two dimensions (i.e. perspective and grain) permit to systematize
the kind of questions analysts might face (see Table 3.2). To validate the
importance of these questions for our Decision goal, we conducted a survey
among practitioners. Participants were selected who had at least one-year
experience on SPLs. Eight practitioners turned up where three have 10 years of

100

Chapter 3. Analyzing product customization

Holistic perspective Item: “I consider important to know ...
Likert scale

Avg.
1 2 3 4 5

(Fi, Pi) [#] ... which features are (not) being customized by products 0 1 3 3 1 3.5

(*, Pi) [#] ... which products are customizing (no) features 0 1 2 3 2 3.75

(Fi, *) [LOC] ... how much effort (i.e. LOC) has been spent on

customizing each feature, in total, no matter the product

2 1 4 0 1 2.87

(Fi, Pi) [LOC] ... how much effort (i.e. LOC) each product is spending on

customizing each feature

2 2 2 1 1 2.62

(Fi, Pi) + code ... how code is being changed on each product to customize

each feature

2 0 2 4 0 3

Feature perspective Item: “I consider important to know ...
Likert scale

Avg.
1 2 3 4 5

(F1, Pi) [#] ... for the feature F1, which products are customizing it 0 0 1 3 3 4

(F1, *) [LOC] ... for the feature F1, which has been the total customization

effort

2 1 3 1 1 2.75

(F1, Pi) [LOC] ... for the feature F1, how much effort (i.e. LOCs) each

product is spending on customizing it

2 1 3 1 1 2.75

(F1,Pi) + code ... how code is being changed on each product to customize

feature F1

1 2 1 1 3 3.37

Product perspective Item: “I consider important to know ...
Likert scale

Avg.
1 2 3 4 5

(Fi, P1) [#] ... for the product P1, which features are customized 0 1 1 2 4 4.12

(*, P1) [LOC] ... for the product P1, how much effort has been spent on

customization, no matter the feature

2 1 2 2 1 2.87

(Fi, P1) [LOC] ... for the product P1, how much effort (i.e. LOC) has been

spent on customizing each feature

2 1 3 1 1 2.75

(Fi, P1) +code ... for the product P1, how P1 is changing the code that

realizes each feature

2 1 3 1 1 2.75

Table 3.2: Rating the importance of information needs along a 5 point LIKERT
scale.

101

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

<	1	hour	
50%	

Few	hours	
25%	

1	day	
25%	

Time	required	for	(Fi,Pi)	[#]	

<	1	hour	
37%	

Few	hours	
38%	

1	day	
25%	

Time	required	for	(*,	Pi)	[#]		

<	1	hour	
12%	

Few	hours	
63%	

1	day	
25%	

Time	required	for	(Fi,Pi)	+code	

<	1	hour	
45%	

Few	hours	
44%	

1	day	
11%	

Time	required	for	(F1,Pi)	[#]	

<	1	hour	
50%	Few	hours	

37%	

1	day	
13%	

	Time	required	for	(F1,	Pi)	+	code	

<	1	hour	
22%	

Few	hours	
33%	

1	day	
45%	

Time	required	for	(Fi,*)[LOC]	

<	1	hour	
25%	

Few	hours	
50%	

1	day	
25%	

Time	required	for	(Fi,	P1)	[#]	

<	1	hour	
12%	

Few	hours	
38%	

1	day	
50%	

Time	required		for	(*,	P1)	[LOC]	

<	1	hour	
12%	

Few	hours	
50%	

1	day	
38%	

Time	required	for	(Pi	,	P1)	+	code	

HOLISTIC PERSPECTIVE FEATURE PERSPECTIVE PRODUCT PERSPECTIVE

Time needed to know:
which products are customizing
(no) features (Avg. Imp. 3.75).

Time needed to know:
which features are (not) being

customized by products
(Avg. Imp. 3.5).

Time needed to know:
how code is being changed on each
product to customize each feature

(Avg. Imp. 3).

Time needed to know:
for the product P1, which features
are customized (Avg. Imp. 4.12).

Time needed to know:
for the feature F1, which products
are customizing it (Avg. Imp. 4).

Time needed to know:
how code is being changed on each

product to customize feature F1
(Avg. Imp. 3.37).

Time needed to know:
for the feature F1, which has been

the total customization effort
(Avg. Imp. 2.75).

Time needed to know:
for the product P1, how much effort
has been spent (Avg. Imp. 2.87).

Time needed to know:
for the product P1, how P1 is

changing the code that realizes
each feature (Avg. Imp. 2.75).

Figure 3.6: Time spent on solving information needs for Customization Analysis.
The question description is followed by the average importance obtained from the
questionnaire in Table 3.2.

102

Chapter 3. Analyzing product customization

experience while the other five accounted for 9, 7, 6, 3, and 1 year of experience
each. Though practitioners all come from the same company, they might have
different duties, and hence, they were requested to provide their opinion from their
specific “SPL plot”. For instance, two domain engineers (application engineers)
responsible for distinct features (products) might give different answers depending
on how their features (products) behave regarding customization needs.

The questionnaire was first checked with two researchers for clarification and
understanding purposes. Next, practitioners were requested to indicate the extent
to which the agree with each of the statements along a LIKERT scale from 1
(“Strongly disagree”) to 5 (“Strongly agree”). Table 3.2 shows the results. Some
comments are due:

• perspective wise, both feature-focused and product-focused are similarly
rated. The highest rated questions are “for the feature F1, which products
are customizing it” (avg. 4) and its sibling, i.e. “for the product P1, which
are the features being customized” (avg. 4.12)

• grain wise, quite an unexpected result: intermediary grains are ranked
down. Analysis needs seem to be biased towards gaining either a general
overview of the customization effort (i.e. [#] questions) or instead, diving
into the nitty-gritty code details (i.e. + code questions)

So far, these information needs are fulfilled by directly peering at the code. We
requested the participants to also indicate how much time they currently need to
solve these information needs. The outcome is depicted in Figure 3.6 for the
highest rated queries. Ultimately, these figures vindicate the effort of providing
dedicated tools to customization analysis.

3.6 Dimensional modeling
The previous section uncovers information needs for customization analysis. This
provides the grounds for coming up with the DW Star Schema, a blueprint of the
database schema that will eventually support the customization analysis. Figure
3.7 depicts the Star Schema for CustomDIFF.

The Fact table. A main decision is the grain at which the customization effort
is to be captured. In Dimensional Modeling, the grain is the fundamental atomic
level of data to be represented in the Fact table. For our purposes, we consider a
fact to be

103

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

the consecutive deletion/addition of LOC for files pertaining to a
given release ("when") conducted by developers ("how") in order to
customize the body of a given variation point ("what") to account for
the specifics of a given product ("where")

These facts are obtained by working out a DIFF between the namesake artifacts of
the core-asset and the product at hand. For the DIFF depicted in Figure 3.4, two
facts would be obtained. Fact #1 would stand for the change introduced in line
29, whereas Fact #2 would correspond to those changes introduced in lines 34-38.
Fact properties include: the number of lines added, the number of lines deleted or
the actual code being changed (custom_diff).

Facts are the finest grain of the customization effort. Obtaining a higher vision
of the customization effort requires these facts to be aggregated along different
dimensions: "the what" (i.e. the VP being affected by the customization), "the
where" (i.e. the product in which the customization took place), "the when" (i.e.
the time of the product release), and "the who" (i.e. developers who conducted
the customization).

The “what” dimension (variation_point table). The customization effort (i.e.
addition/deletion of code lines) takes place within a context: the body of the
variation point (VP). Products derived from the same core-assets will be able to
touch the same VPs. VPs are embedded within file_assets. Finally, file assets
might be arranged along packages (basically, folders). This conforms the asset
hierarchy. That is, tables "customization_fact", "variation_point", "file_asset" and
"package_asset" (see Figure 3.7) all hold a one-to-many relationship that permits
to gradually aggregate customization measures along coarser-grained assets.

Besides the asset hierarchy, another aggregation criterium are features.
Variation points include a boolean expression that checks out feature presence. A
customization effort might then impact a feature_group3. Along good practices on
dimensional design, this is captured using a "bridge table"4 (feature_bridge). This
permits analysis to be conducted at the level of single features. However, Danfoss

3Worth noticing, VPs might be nested. Figure 3.3 illustrates this situation for VP-1. The
frequency of these situations (feature tangling and feature nesting) is being studied in [HZS+16,
ZBP+13]. This begs the question of what are the features affected by a customization effort
inside VP-2’s body. For our purposes, we include all features: those appearing directly in the VP
body (i.e. ’Temperature’) as well as those “inherited” from containing VPs (i.e. ’WindSpeed’ and
’AirPressure’).

4An alternative design is to flatten the multi-valued attribute by including a column for each of
the different values: a boolean column will be included for each possible feature, setting it a true

104

Chapter 3. Analyzing product customization

�
�
�
��
�
��
	
��
�

�
�	
�
�

��
��
��
�
�
�	

���
�
�
�
�

���
�
��

�
�
�
�
�
�
�

���
�
��
�
�
��
��
�
�
�
�

��
��
�
�
�
�
���
��
�
�
�
�
�
�
�

��
�
�
��
�
�
�
�
��
�
�
���
��
��
�
�
�
�
�
�

��
�
�
��
�
�
�
�
�
�
��

�
�
�
��
��
�
�
�
�
�

��
�

��

���
�
�
�
��
��
�
�

��
�
�
�
��
��
�
�
��
�
��
�
�
�
�
�

��
�
��
�
�
��
��
��

��
�
�
�

��
�
��
!!
!

�
�
�
�
�

�
	
��
	
��
�

�
�
�
�

�

��
�

��

���
�
�
�
��
��
�
�

�
"�
��
��
��
�
��
�
�
�
�
�
�
�

��

��
�
��
�
�

��
�
��

��
��
�
�
��
�
�
�
�
�

�
�
�
�
�

��
��
�
	
�
�
�
�

��

��
�
��
�
�

�

�
�
�#
$
%
&
'
$
%
()
*
*
+

�

�,
�#
$
%
&
'
$
%
()
*
*
+

��
	�
�
�
�

��
�
�
�
$
��
�
��
�
�

��
�
��
�
��
�
�
�
�
�
�
�
�

��
�

�-

�
�
�
�
�

�
�
�
�
�

�
�
�
�
��
�
�
�

�
��
�
�
�
��
��
��
	
�
�

��
	
��
��

��
��

��
��
�#
$
%
&
'
$
%
()
*
*
+

�

�
�
�#
$
%
&
'
$
%
()
*
*
+

��
�
�
�
�
�
�

��
�

��
�
��
�
�

�
�
�
�
�

��
	
��
��
�
�
��
�
�

��
�
��

��
��
�
�
��
�
�
�
�
�

�
�
�
�
�

��
	
��
��
�
�
��
�
�
�

��
�
��

��
��
�
�
��
�
�
�
�
�

��
�
��

��
��
�#
$
%
&
'
$
%
()
*
*
+

�
�
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�
�

�
�
�
�
��
�
�
��
�
��
�
�

�
�
�
	
�
�
�
��
�
�

�
�
��
�
�
�
��

��
	
��
��
�
�
�

�
�
	
��
	
��
�

�
�
�

��

�
�
�
�

�
�
��
�
�
�
��
�
��
��
��
�
�
��
	
��
��
�

�
�
�
�

�
�
�
��
	
�
�
�
��
�
	

�
�
��
	
��
��
�
�
�
�
�
�
�

�
�
��
	
�
�
�
��
�
	

�
�
��
	
��
��
�

�
�
�
��
�
�
�
�
�
�
��
	
��
��
�
	

�
�
�
�
��
	
�
�
�
�

�
	
��

��
��
	
��
��

��
�

��
�
��
�

��
��
�
�
�

�

�
�
�#
$
%
&
'
$
%
(.
/
+

��
��
�
�
��
�
��
�#
$
%
&
'
�

�
�
�
�
�

�
	
�
�
	
�
�
�
	
�
�
�
�

��
�

�-

�
�
�
�
�

�

�
�
�#
$
%
&
'
$
%
(.
/
+

��
��
�
��
�
�

��
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
	
��

��
��
	
��
��
�
�
�
��
�
�
�
��
�
��
��
��
�

�
�
�
�

�
�
	
��

��
��
	
��
��
�
�
�
��
�
�
�
��
�
	
�
�
	
�
�
�

�
�
�
�

�
�
	
��

��
��
	
��
��
�
�
�
	
�
�
	
�
�
�
	
�
�
�
��

�
�
�
�

�
��
	
��
��
�
�
�
��
�
�
�
��
�
	
�
�
	
�
�
�

�
�
�
�

�
��
	
��
��
�
�
�
	
�
�
	
�
�
�
	
�
�
�
��

�
��
�
�
�
�

��
0
��
�
�
��
�
�
�

�

�
�
�#
$
%
&
'
$
%
(.
/
+

��
��
�
�
�
��
�
�
�
�
�
�
�
�

��
��
�
�
�
�
�
�

�
�
�
�
�

Th
e

w
ho

Th
e

w
he

n

Th
e

w
he

re

Th
e

w
ha

t

Fi
gu

re
3.

7:
St

ar
t/S

no
w

fla
ke

sc
he

m
a

fo
rC

us
to

m
D

IF
F.

105

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

practitioners observed that for large number of features, it would be convenient to
undertake the analysis at the parent-feature level. Parent features gather together a
set of related features, e.g. ’AirPressure’, ’Temperature’ and ’WindSpeed’ belong
to the same parent feature ’Sensors’ (see Table 3.1). Hence, we also include
information about the parent_feature. Summing it up, customization efforts (i.e.
facts) are scoped by VP expressions which might refer to different features, which,
in turn, might be clustered along parent features. This conforms the feature
hierarchy.

The “where” dimension (product table). Customization efforts are
contextualized within products. Product characterization (e.g. customer,
contact details, priority, etc) are not addressed in this work.

The “when” dimension (product_release table). Customizations are
committed at a given time. However, we do not consider in-between releases but
just final releases where the product is ready to be delivered. This increases the
confidence that the customization effort being measured, has been appropriately
tested before being disclosed to customers. Therefore, the customization effort
is for changes already available at the product release. It can be argued that this
does not account for all the effort that goes till reaching this final state. That’s
true. But this would measure more a kind of productivity effort rather than the
amount of change. Nevertheless, property inbetween_commit for the fact table,
collects the ID for those intermediary releases, just in case.

The “who” dimension (developer_group table). This dimension collects data
about the engineers that conduct the customization. Since more than one person
might be involved, we capture the notion of group that is next broken down in
each of its members (developer). We do not further tackle this dimension here.

Figure 3.7 depicts the main tables that result from Dimensional Modeling.
These tables are populated out the SPL’s Git repository through the ETL process.
This process is responsible for pulling data out of the operational systems and
placing it into a data warehouse. Most DWs combine data from different source

if the feature at hand participates in the VP expression. This however will tight the dimensional
design to the current feature model. Adding (or deleting) features would need to be propagated to
the variation_point table. Since we are considering SPLs in an early stage of development where
changes in the feature model are likely, we rather stick to the "bridge table" option.

106

Chapter 3. Analyzing product customization

Analysis
canvas

Position
map

Figure 3.8: CustomDIFF screenshot: Position map (left) and Analysis canvas
(right). The Analysis canvas displays the alluvial diagram to assess the
customization effort for parent-features (left axe) and products (right axe).
Customizations conducted outside VP bodies (impacting no feature) are collected
under the name “No Feature”.

systems. For the time being, however, we stick to a single data source: the SPL’s
Git repository. Appendix A provides details of CustomDIFF’s ETL process.

Once the data is in placed, Reporting Tools help to interactively explore
the customization-effort dimensions. Broadly speaking, Reporting Tools can
be regarded as a continuation of existing DIFF utilities. While these utilities
currently permit to assess the size of the change at the level of files, DW Reporting
Tools would permit this assessment to take place at the level of features and
products that might potentially encompass tens, if not hundreds, of files. Next
section introduces such a reporting capability for CustomDIFF with a focus on
the “where” dimension.

107

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

3.7 Reporting tools
As captured in the Requirement Analysis stage, Decision goals might be “product-
focus” (“the where”) or “feature-focus” (“the what”). We believe Alluvial
diagrams might help to convey this double focus. Alluvial diagrams are a type
of flow diagram originally developed to represent how multiple groups relate to
one another across several variables. We resort to this visualization to convey the
relationship for the two main dimensions of the customization effort: “the where”
and “the what”.

Figure 3.8 shows the case for our running example. Each dimension is
assigned to a vertical axe: the feature axe (right) vs. the product axe (left).
Values are represented with blocks on each axis. The height of a block represents
the size of the customization effort for this feature/product, and the height of
a stream represents the degree of the customization effort contained in both
blocks connected by the stream field. Looking at Figure 3.8, we can promptly
appreciate how the parent feature Sensors is being customized by productBerlin,
productParis, and productNewYork, with product productBerlin being the one
with the largest customization effort. Alluvial diagrams also help to promptly
appreciate which variables are more clustered (fewer, wider streams) and which
are more distributed (more, narrower streams). For instance, Sensors is being
evenly customized in the three products, whereas No Feature is being mainly
associated with productNewYork. Next, we provide different analysis scenarios.
Readers are encouraged to access the running example on-line at http://
onekin.org/portal/content/customdiff.

Figure 3.8 shows the extent of the customization effort at the level of parent
features and products. But finer-grained details might be needed. Back to the
Star Schema in Figure 3.7, we notice “the where” dimension accounts for two
hierarchies, namely, the asset hierarchy and the feature hierarchy. Developers can
move up and down each of these hierarchies by clicking on the respective blocks.
An example follows for the feature axe:

• when in Figure 3.8, clicking on the Sensors block, drills down into its child
features. The outcome is depicted in Figure 3.9 (top) where Sensors’ child
features become blocks on the left axe,

• when in Figure 3.9 (top), clicking on a feature block, e.g. WindSpeed, drills
down into the artefacts impacted by this feature5. Figure3.9 stuffed(middle)

5Note that there is one level behind, i.e. component package level. For the sake of

108

http://onekin.org/portal/content/customdiff
http://onekin.org/portal/content/customdiff

Chapter 3. Analyzing product customization

Enhanced heading
with VP expression

Enhanced heading with
VP expression

Figure 3.9: Drilling-down scenario. Breaking down customization efforts for
Sensors by Sensors’ child features (top); next WindSpeed’s assets (middle), and
finally raw facts (bottom). 109

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure 3.10: Stream-based drill down. Simultaneously breaking down the
customization effort for Sensors and productParis’ packages.

depicts the output where the customization effort is broken down by
WindSpeed’s files.

• when in Figure 3.9 (middle), clicking on a stream, e.g.
sensors.js&productBerlin-v4.0, drills down into the code level diff.
Now, the customization effort is broken down by the lines of code that
productBerlin changed in sensors.js. This information is displayed
mimicking traditional DIFF outputs but where VPs are shown as separated
hunks (see Figure3.9 (bottom)).

The latter example illustrates how streams also denote customization efforts, but
this time involving a value for each of the axes, e.g. (Sensors, productBerlin).
By clicking on the stream, the associated customization effort is broken down
simultaneously for the two variables affected. Figure 3.10 shows the case for
Sensors and productParis, which are decomposed into features and packages,
respectively. Next, we introduce some improvements that resulted from previous
formative evaluations of CustomDIFF.

understanding, we omit this step.

110

Chapter 3. Analyzing product customization

Enhancing DIFF context description DIFF traditional visualization includes
the so-called context, i.e. the three nearest unchanged lines that precede and
follow the change (see Figure 3.4). The context serves as a reference to locate
the changed lines’ place in a modified file. However, this might not be enough for
SPLs. In SPLs, code is stuffed with variation points (VPs) that determine when the
associated body is to be included. Hence, VPs are a main contextual information
for changes. Unfortunately, VPs are realized as comments, which can be placed
far away from where the change has occurred, and hence, might not show up in
the DIFF context, depriving engineers from this information. This is the case for
the change introduced in line 29 in Figure 3.4. Lines 26, 27, 28, i.e. the context,
do not include the VP annotation.

CustomDIFF adds VP expressions as part of the DIFF visualization. Figure
3.9 (bottom) shows the same case that Figure 3.4, but now information about the
enclosing VP is included into the headings of each hunk. Note how the DIFF is
now split into two hunks, one for each customization fact. One hunks corresponds
to the change in line 29 under the scope of VP-1 (WindSpeed or AirPressure). The
other hunk stands for the changes in lines 34-38 under the scope of VP-2. Notice
that VP-2 is nested within VP-1. This is reflected in the hunk’s heading along the
pattern: <enclosing VP> “–> nested into –>” <enclosed VP>. Notice that all
this information is pre-computed in the fact table, specifically the hunk is stored
into the custom_diff property.

The position map Engineers might get disoriented when moving up and down
the hierarchies. To ease location (where am I?), a left hand-side collapsable panel
is deployed besides the Analysis canvas. The map pinpoints the current grain in
the dimension hierarchy (see node with orange background in Figure 4.7) as well
as the grains already visited (see node with blue background in 3.9 (top)).

Feature-based Filtering Engineers might not be interested in the whole set of
(parent) features but just a subset. The feature-based filter (see Figure 4.7) permits
engineers to select those features they are interested in using a feature-diagram
similar to the one displayed in pure::variants. The Analysis canvas will depict the
alluvial diagram just for the selected set of features.

111

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

3.8 Evaluation
By moving from the traditional DIFF to CustomDIFF, we aim at making
customization analysis more efficient and effective. Efficiency wise, DWs
outperform DIFF, insofar as results are precomputed and access is conducted
through performant SQL engines. But what it rests to be seen is whether DW
in general, and CustomDIFF in particular, is effective, i.e. they help to satisfy the
information needs of SPL analysts. To this end, this section attempts to predict
the acceptability of tools, such as, CustomDIFF by applying the Technology
Acceptance Model (TAM) [Dav89].

TAM proposes that the readiness of a user to use (or not to use) a new
technology is determined by her attitude towards the technology. This attitude
is influenced by two beliefs which are perceived usefulness and perceived ease of
use. Perceived usefulness is defined as “the degree to which a person believes that
using a particular technology would enhance his or her job performance” [Dav89].
On the other hand, ease of use refers to “the degree to which a person believes
that using a particular system would be free of effort” [Dav89]. According to the
theory of reasoned action [FA75], these constructs are strongly correlated to the
intention of actually using the technological innovation. No matter how easy to
use a tool can be; if the tool is not perceived as useful by its users it would not be
used. The opposite also holds. A technology might be very useful; but if the tool
is cumbersome and hard to use, users would not use it either. Hence, we decided
to use both constructs. Therefore, we aim at

analyzing the use of CustomDIFF for the purpose of evaluating its
usefulness and ease of use with respect to conducting customization
analysis from the point of view of SPL practitioners in the context of
annotation-based SPLs.

3.8.1 Participants
Customization analysis is to be entrusted not to newcomers, but to those with
a reasonable exposure to SPL engineering. In addition, customization analysis
allows for different perspectives (feature vs. product) that might depend on the
subjects’ role, balanced between domain engineering and product engineering. On
these grounds, participants were selected among Danfoss developers with at least
one year experience and having heterogenous roles: 1 product-release manager,
3 software developers that accomplish both domain and application engineering

112

Chapter 3. Analyzing product customization

Sensors Language Warning No

featureAir

Pressure

Wind

Speed

Temperature German English Gale Heat

Product

Berlin

19

LOCs

30

LOCs

0

LOCs

0

LOCs

0

LOCs

2

LOCs

2

LOCs

3

LOCs

Product

Paris

9

LOCs

14

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

Product

NewYork

18

LOCs

8

LOCs

2

LOCs

0

LOCs

0

LOCs

0

LOCs

0

LOCs

17

LOCs

Table 3.3: Experiment: products and customization effort per feature.

task, and 2 more that also act as code reviewers before changes are integrated into
the integration branch. Participants’ average expertise on the SPL was 7 years.

3.8.2 Training examples
Before delivering the questionnaire, it is most important for participants to be
exposed to the system under study (i.e. CustomDIFF). The faithfulness of these
sample cases w.r.t the real practice, is paramount for participants to correctly
validate the tool, and for researchers to assess the validity of the experiment. This
subsection describes these sample cases.

Sample cases were selected among those ranked highest during the
Requirement Analysis stage (see Table 3.2). The WeatherStation SPL was used as
the running example (see Section 3.3). This SPL is included in pure::variants
[pur] experimental material, and hence, participants were already familiarized
with it. This permits participants to focus on customization issues rather than
on mixing up with the SPL domain itself.

For the evaluation, three product variants were created: productParis,
productBerlin and productNewYork, each with a set of customizations (see Table
3.3). For instance, productBerlin customizes AirPressure, WindSpeed, Gale
and Heat by changing 19, 30, 2, and 2 LOCs, respectively. Both, core-
assets and products, reside in a GIT repository. CustomDIFF taps into this
repository. We deployed CustomDIFF online at http://158.227.178.
168/customdiff 6.

Upon this setting, participants were requested to conduct distinct tasks along
the different perspectives identified in Section 3.5. For each perspective, two types

6Participants were requested to access the advanced analysis mode.

113

http://158.227.178.168/customdiff
http://158.227.178.168/customdiff

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

of tasks were performed:

• pinpointing a given artefact (either a feature or a product)

• conducting roll-up and drill-down along “the where” dimension, either the
feature hierarchy or the asset hierarchy

Next, we list the tasks:

• Feature Perspective: Analyze the evolution of feature AirPressure

– Task 1.1: Which products are customizing the AirPressure child-
feature?

– Task 1.2: Analyze how the code that realizes AirPressure has been
changed by the product portfolio.

• Holistic perspective: Analyze how the whole set of features is being
customized

– Task 2.1. Which parent features are not customized by the products?

– Task 2.2. Analyze how productParis is changing the implementation
of the Sensors parent feature

• Product perspective: Analyze how product Berlin has evolved from the
core-assets

– Task 3.1. Which parent-features is productBerlin customizing?

– Task 3.2. Analyze how the implementation of productBerlin has
evolved.

3.8.3 Procedure
Session 1: Introduction to CustomDIFF (1h 45’). CustomDIFF’s rationales and
operations were introduced to the participants with the help of the WeatherStation
SPL. Next, CustomDIFF was used for the Danfoss Driver SPL. Participants made
questions during and after the presentation.

Session 2: Hands-on CustomDIFF (1h 30’). CustomDIFF was evaluated
w.r.t. usefulness and ease of use. First a running example was conducted (see
previous subsection) where participants were exposed to different information

114

Chapter 3. Analyzing product customization

Perspect. Item: CustomDIFF was useful to

determine ...

P1 P2 P3 P4 P5 P6 Avg. St.

Dev.

Feature
...which products are customizing

the child-feature AirPressure?

6 4 6 6 6 6 5.67 0.82

...how is each product customizing

the code that realizes the

AirPressure feature

6 4 6 6 7 4 5.5 1.22

Holistic
...which parent-features are not

customized by the products

7 5 6 6 6 6 6 0.63

...how productParis is changing the

implementation of Sensors

parent-feature

6 5 6 6 7 5 5.83 0.75

Product
...which parent-features is

productBerlin customizing

7 4 6 6 6 6 5.83 0.98

...how the implementation of

productBerlin has evolved

6 4 6 6 6 4 5.33 1.03

Total 6.33 4.33 6 6 6.33 5.17 5,.9 5.43

Table 3.4: CustomDIFF’s perceived usefulness.

needs. Next, the evaluation questionnaire was deployed on-line for the
participants to assess CustomDIFF’s usefulness and ease of use. Due to agenda
constraints, participants were divided into two group, with 2 and 4 participants
each. During the sessions, a researcher was observing participants’ interactions
with the tool. Participants raised questions, doubts and comments that were noted
down by the researcher.

3.8.4 Results

Usefulness. Usefulness was evaluated w.r.t. information findability, i.e. to what
extent does it help users find the required information needed for customization
analysis. Table 3.4 gathers the results of a questionnaire where agreement with
statements is rated along a LIKERT scale that ranges from 1 (“Strongly disagree”)
to 7 (“Strongly agree”).

Participants rated CustomDIFF with a total average of 5.69. As for the type
of questions, i.e. artefact pinpointing vs. hierarchy drill down, i.e. the former is
consistently punctuated slightly higher.

Ease of use. Davis’ template was used for evaluating this aspect (see Table

115

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Item: P1 P2 P3 P4 P5 P6 Avg. St.

Dev.

Learning to operate CustomDIFF would be easy

for me

6 4 7 6 6 6 5.83 0.98

I would find it easy to get CustomDIFF to do

what I want it to do

5 4 6 6 5 4 5 0.89

My interaction with CustomDIFF would be clear

and understandable

6 4 6 6 6 5 5.5 0.84

I would find CustomDIFF to be flexible to

interact with

5 4 6 5 6 5 5.17 0.75

It would be easy for me to become skillful at

using CustomDIFF

7 4 6 6 6 5 5.67 1.03

I would find CustomDIFF easy to use 6 4 6 6 6 5 5.5 0.87

Total 5.83 4 6.16 5.83 5.83 5 5.44 0.89

Table 3.5: CustomDIFF’s perceived ease of use. Evaluation along a LIKERT
scale from 1 (total disagreement) to 7 (total agreement).

Item: I would find ... P1 P2 P3 P4 P5 P6 Avg. St.

Dev.

...alluvial diagrams useful for grasping

customization effort

6 5 6 6 6 6 5.84 0.41

...the parent-feature dimension useful to abstract

away from individual features

6 5 5 5 6 6 5.5 0.58

...the component-based dimension to abstract

away from files

5 5 6 5 6 5 5.33 0.52

... the VP-enriched context Diff to easy locate

change placement into code

6 5 7 6 5 4 5.5 1.05

... feature-based filtering utility useful to easy

focus

7 4 6 6 6 6 5.83 0.98

...the position map useful to position myself

during customization analysis

6 4 5 6 5 6 5.33 0.82

Total 6 4.66 5.83 5.67 5.67 5.5 5.55 0.72

Table 3.6: CustomDIFF’s specific utilities. Evaluation along a LIKERT scale
from 1 (total disagreement) to 7 (total agreement).

116

Chapter 3. Analyzing product customization

3.6). Participants rated CustomDIFF with an avg. 5.44. This general template was
extended to assess CustomDIFF specific mechanisms (see Table 3.6): the use of
alluvial diagrams (5.84), the parent-feature dimension (5.5), the component-based
dimension (5.33), the VP-enriched context DIFF (5.5), the feature-based filtering
utility (5.83) and the analysis position map.

3.8.5 Discussion
Preliminary evaluation shows promising results for CustomDIFF. The aspects
most highly rated include:

• the easiness to find the DIFF between products and features,

• the overall picture provided by alluvial diagrams.

Subsequent discussions with participants also helped to identify two additional
use cases where CustomDIFF can help:

1. as a code-review tool. When product customizations are to be promoted
(i.e. integrated into the SPL core-assets), code reviewers need to ensure that
these changes do not affect other products in the first place. This is ensured
by surrounding the customization with a variation point that includes a
brand new child feature that is initially enabled only for the product from
where the customization was originated. CustomDIFF might help to trace
if this practice is followed.

2. as an impact analysis tool for integrating frozen products into the SPL.
Frozen products are those derived from the SPL core-asset base several
years ago but which evolved independently afterwards. At a certain point,
the decision is made that a frozen product needs to be upgraded to the
current SPL release. This decision needs to weight the effort needed. This
can be achieved using CustomDIFF.

3.8.6 Threats to validity
Construct Validity refers to the degree of accuracy to which the variables defined
in a study measure the constructs of interest. Here, the constructs are usefulness
and ease of use, while variables are the items of the used questionnaires, and the
answers participants provide to the tasks. Usefulness was assessed in terms of the

117

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Context dimension Characteristic Value

Product
System Type embedded systems
Size (aprox.) 800 features & 20 products
Maturity 10 years
Programming Language C++

Process
Customization practice grown-and-prune
Branching strategy branch-and-unite
Release cycle frequency bi-monthly

Tools & Techniques
SPL approach annotation-based
SPL tool pure::variants

People
Roles domain engineers
Experience 7-year average SPL experience

Organization
Model Matrix organization
Certification SPLC-awarded hall of fame

Table 3.7: Danfoss Drive SPL contextual data along Petersen’s facets [PW09].

fulfillment of information needs. These information needs were carefully selected
to be paradigmatic of the different scenarios that might rise during customization
analysis, specifically, those scenarios that were ranked as most important by
practitioners. As for ease of use, we resort to Davis’ questionnaire whose validity
and reliability have been previously endorsed (e.g. [MPC01, AP98]).

Internal Validity is concerned with the conduct of the study. Here, the
treatment is the use of CustomDIFF to address customization analysis by SPL
engineers. We were specially careful to focus on SPL engineers who have at
least one year of SPL expertise. Indeed, participants have on average, seven years
of SPL experience and come from different backgrounds in SPL development.
Hence, we believe participants to be representative of the target audience. As for
the evaluation methodology, the questionnaire’s understandability was improved
by providing a running example that aimed to help participants on contextualizing
the different questions.

External Validity tackles the representativeness of the study, and the ability
to generalize the conclusions beyond the scope of the study itself. In this paper,
validation was conducted with employees coming from a given SPL: Danfoss
Drive SPL. Hence, customization practices reflect those of a single company,
and hence, it rests to be seen whether CustomDIFF accounts for customization
practices other than Danfoss’. For others to tap into this experience, Table 3.7
provides contextual details that might help others to extrapolate this experience

118

Chapter 3. Analyzing product customization

to their owns. That said, it should be noted that CustomDIFF is an analysis tool
and hence, it does not preclude the customization practice as such, in the sense of
determining how to proceed during the pruning stage. Specially, we hypothesize
that companies whose SPL is on a less mature level, where product customizations
are more likely, would find CustomDIFF more useful.

For engineering science, Wieringa argues that “for theories to be useful in
practice, they should give sufficient understanding of a sufficiently large class
of cases, without having to be universal or complete” [WD15]. On the way to
generalization, Wieringa introduces four strategies. In case-based generalization,
we study individual cases, and generalize about components and mechanisms
found in a case, by similarity. The assumption is that components are less
varied than the cases they occur in [WD15]. This is the approach we follow.
CustomDIFF’s main contributions are pinpointing to the information needs, and
the way to resolving these needs through DW and Alluvial diagrams. We believe
this approach to be valid beyond variations on either the technological setting
(e.g. data sources other than Git, annotation-based SPL frameworks other than
pure::variants) or the process setting (e.g. different SPL release frequencies)
or the organizational setting (e.g. a hierarchical structure instead of a matrix
structure). CustomDIFF’s main contributions are pinpointing to the information
needs, and the way to resolve these needs through DW and Alluvial diagrams. We
believe these contributions to be general enough to benefit SPL installations other
than Danfoss.

3.9 Related work
Discussion of related work covers different topics: identifying changes at product
level, commit untangling and visualization for SPLs. Next we provide discussion
for each topic.

3.9.1 Identifying changes at product level

This section frames CustomDIFF within related approaches on monitoring the
application engineering process. Differences mainly stem from what is being
monitored, how is being monitored, and why is being monitored. Table 3.8
outlines the outcome that also includes the type of SPL being targeted. Next,
the comparison is arranged along the artefact being monitored (“the what”).

119

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Ref. The subject of change

(What)

Purpose

(Why)

Change Detection
Technique

(How)

SPL type

(Where)

[HR10] Requirements, Variability

model

Uncover application needs Continuous

monitoring

na

[CKM+08] Requirements Foster feed-backing from

application engineers

Story-based textual

communication

na

[MBKM08] Code Promote cloned code to

the SPL

Clone detection Annotation

[LG15] Variability model Increase awareness of

changes in products

Continuous

monitoring

Composition

[PTS+16] Code Synchronize products

among them

Continuous

monitoring
Clone&own

[FLLE16] Code Synchronize products

among them

Feature extraction

CustomDIFF Code Ease product

customization analysis

Diff Annotation

Table 3.8: Related work on monitoring the application engineering process.

Requirements. Here, product engineers are instructed to suggest eventual
SPL requirements to domain engineers. In Carbon et al. [CKM+08], and based
on their interaction with customers, product engineers resort to reuse stories to
directly communicate changes in SPL requirements to domain engineers. This
approach adapts the agile practice “planning game” to SPLs [CKM+08]. In a
similar vein, Heider et al. also advocate for SPL requirements to be fed from
requirements risen during application engineering [HR10]. Unlike Carbon et
al, Heider et al. do not require explicit intervention of domain engineers, but
rather, application engineering is being monitored at the requirement level. To this
end, authors introduce EvoKing, a tool that provides SPL engineers an overview
on new requirements that have arisen on product level. Domain engineers can
afterwards decide about each requirement to be implemented at the product level
or SPL level.

Compared with EvoKing, CustomDIFF faces a similar problem but tracking
is achieved at the code level by inspecting the SPL’s Git repository. It could be
argued that monitoring code rather than requirements makes CustomDIFF more
“evidence-based” in the sense that what is being tracked is code that has already
been delivered to customers. Drawing the attention of busy domain engineers
would require not just grasping the product requirements but proving that the

120

Chapter 3. Analyzing product customization

new functionality is being coded, tested and delivered to customers. What might
well lie behind these different focuses is a distinct way of managing product
engineering, i.e. whether product engineers are free to promptly account for
their customer requirements by moving directly into code, or rather, customer
requirements might need first some additional approval by domain engineers. On
the downside, and unlike EvoKing, monitoring product engineering at the code
level requires of additional mechanisms that abstract away from code to most
abstract terms such as feature and product. This is being one of the endeavors of
CustomDIFF.

Variability models. Here, product engineers can add features to the
variability model if exiting functionality is not enough to fulfill customer
requirements. Broadly, the variability model can be collaboratively edited, and the
challenge is how to make all contributors aware of the change. To this end, Lettner
et al. [LG15] introduce the notion of “features feeds”. Domain and application
engineers can subscribe to the variability model elements, i.e. configuration
units, features and variation points (elements in the Common Variability Language
[HMO+08]). Say a product engineer needs to add a new feature to a product, and
hence, she adds a new feature to the configuration unit CU1. Engineers (both
domain and application ones) subscribed to CU1 will be notified. Next, when the
new feature is implemented, product engineers can propose their implementation
to be promoted as reusable, and if so, other engineers can incorporate it into their
developments.

Compared with Lettner et al., CustomDIFF is less ambitious in the sense
that our aim stops at detecting the change (i.e. the customization effort) but
it does not elaborate on what should be the implications of such analysis. So
far, CustomDIFF’s main scenario is for domain engineers to schedule next SPL
release. However, product engineers might also benefit from gazing at what
other mates are customizing for the features of interest. For instance, a bug
fix introduced in a given product might be promptly and directly incorporated
into other products, without waiting for this fix to be promoted into the core-
asset. Nevertheless, CustomDIFF does not preclude the actions derived from
customization analysis.

The source code. Mende et al. [MBKM08] tackles clone detection among
product customizations. Authors use clone detection techniques to identify
similar functions among the derived products, that can later be re-engineered
back to the SPL. Their approach uses the Levenshtein distance to measure the
similarity between products’ functions. They also propose metrics that aggregate
the similarity at the architectural level to sustain the need for the pruning phase.

121

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

For clone&own SPLs, Pfofe et al. [PTS+16] address product sync. For a given
product change, an Eclipse plugin facilitates this change to be propagated to other
feature-sharing products using a 3-way merge.

Compared with these works, our approach differs in the goal. We also work at
the code level but our aim is not to detect clones nor comparing one implantation
with another. Our analysis stops at detecting the modified LOCs as a measure
of the customization effort. By contrast, we strive to provide abstraction and
visualization mechanisms that permit engineers to conduct customization analysis
at levels other than code.

3.9.2 Commit untangling

Tangled commits are those commits that introduce changes related multiple
tasks. Although, good development practices encourage that a commit should
introduce only changes related to a single task, this is rarely the case in practice
[HJZ16, DBG+15]. For instance, a commit c1, might introduce changes to
develop a new functionality, as well as, to resolve a bug-fix, or refactoring or
code cleanup. Sharing tangled commits is problematic as they make code review,
reversion, and integration harder and historical analyses of the project less reliable
[HJZ16]. Hence, researchers have worked at untangling existing commits, i.e.,
finding which changes belong to the same task, e.g. [DBG+15].

Note that CustomDIFF’s ETL process considers a given SPL release and the
latest commits on product branches. These latest commits on product branches
when compared to the SPL release, depict tangled changes. Indeed, CustomDIFF
analyses are aware of these “tangled” commits. Nevertheless, our extraction
process untangles these changes based on the variation points (features) where the
changes have been performed. Hence, the changes that a product has committed
are untangled based on variation points. We are not aware of similar efforts done
in this area, i.e. untangling changes based on the features that have changed. As
evaluated by Danfoss engineers in Section 3.8 these diffs has been proven as being
useful for customization analysis. Additionally, this untangled changes, stored as
custom_diff in the customization_fact table, can be further used to integrate then
into the SPL. Should a domain engineer want to integrate the changes performed
to a given feature, she could take all the custom_diff whose variation points
contain the given feature, and apply it as patches to the SPL.

122

Chapter 3. Analyzing product customization

Ref. Who What Why Visualization
means

[KII13] Domain
engineers

Product-to-
product

relationships

SPL migration Product Evolution
Tree

[WRK09] SPL manager SPL feature
survivability

SPL scoping Feature Survival
Tree

[dOBN12] SPL testers Co-product
testing

Product testing Product Genealogy
Tree

[NSM17] Domain
engineers

Feature evolution Feature analysis Treemap,
polimetric,
timeline,

dependency.
[TDB17] Domain

engineers
Code similarity Spotting reuse

opportunities for
SPL adoption

Treemaps, set bar
diagram,

phylogenetic
diagram, structural

diagram
CustomDIFF Domain and

application
engineers

Customization
effort

Spotting reuse
opportunities for
SPL evolution

Alluvial daigram

Table 3.9: Related work on SPL visualization, along facets: who, what, why and
visualization means.
3.9.3 Visualization for SPLs

Software Visualization approaches have been classified along three main
dimensions [NTM+13]: (1) the point of view, i.e., who is the user group that
will use the visualization, (2) the object of study, i.e., what is being analyzed, and
(3) the purpose and the focus, i.e., why is the analysis being done. Though this
framework has been proposed for Software in general, we see no impediment to
apply it also to SPLs. Specifically, the aim of this work can be phrased as helping
SPL engineers (who) understand SPL customization effort (what) so that reuse
opportunities can be identified (why). This section resorts to this classification to
place related work (based on our understanding of the papers), as well as, framing
our own.

López-Herrejón et al. [LHIE17] present a 2016 dated mapping study
on visualization for SPLs. This mapping study categorizes papers by the

123

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

SPL life-cycle the visualization technique applies to. Specifically, for the
facet “maintenance and evolution” five papers are identified, from which three
correspond to “evolution”: [KII13, dOBN12, WRK09, UBBF+15]. Next
paragraphs outline these works while placing them into the Novais et al’s
framework [NTM+13] (see Table 3.9).

Kanda et al. [KII13] aim at helping engineers on migrating a set of products,
created through clone&own, to a managed SPL. For this re-engineering effort,
engineers require to understand how products are derived from each one, for
the sake of better identifying commonalities and variabilities. However, this can
be challenging in an scenario where there is not such a trace recorded, i.e. no
VCS that tracks this derivation practice. Authors introduce the so-called “Product
Evolution Tree” visualization whereby derivation relationships among products
are displayed in a way similar to VCS branching.

Wnuk et al. [WRK09] aim at facilitating SPL managers understand changes
in the SPL scoping process, i.e., which SPL features need to be implement in the
next release. Authors introduce the so-called “Feature Survival Chart” whereby a
feature life-spam is displayed, which indicates whether they have been considered
for the next SPL release, whether they had make it into the release, whether
they were not planned beforehand but finally included, and other feature scoping
eventualities.

De Oliveira et al. [dOBN12] aim at helping SPL testers to identify which
already released products need to be re-tested when a bug is found in a product.
Authors propose visualizing the SPL core-asset baselines as well as the product
portfolio using a “Product Genealogy Tree”. This visualization captures three
traces: (1) which products were derived from which core-assets, (2) which
products are created from already derived products, and (3) which products have
propagated changes to which products. When a bug is detected in a product, this
visualization can help testers identify which other related products also need to be
tested.

Tenev et al. [TDB17] aim at helping domain engineers (or SPL architects)
identify the reuse potential of a number of similar software variants created by
a clone&own approach. Their approach and tool, “Variant Analysis”, computes
the similarities of the source code of multiple software systems, and visualizes
the commonalities and variabilities by means of multiple visualization means,
such as, bar diagrams, treemaps and phylogenetic diagrams. These diagrams
provide domain engineers information about code similarity across a group of
cloned software systems at different abstraction levels, i.e. from a single code
line through files, folders and subsystems up to the whole system, which can them

124

Chapter 3. Analyzing product customization

identify reuse potential and schedule an SPL migration plan.
CustomDIFF differs from the above works in both “the what” (i.e. tracking

the customization effort) and “the why” (i.e. identifying reuse opportunities for
evolving SPLs). We are not aware of similar endeavors though the practice
of product customization has been extensively reported in the literature, e.g.
[NNK16, BB11, DSB05, KH12].

3.10 Conclusion
Timely SPL evolution might require changes to be first conducted into products
(grow), and next, be promoted into core-assets (prune). This grow-and-prune
cycle might need to assess the extent and quality of “the growth” to better conduct
the pruning. That is, grow-and-prune might need customization analysis. The
main contribution of this paper is to introduce a DW approach to analyze this
customization process. In this setting, we conducted a survey among Danfoss
engineers to identify information needs. Next, we resorted to Dimensional
Modeling to tackle these information needs using the modified LOCs as facts.
Finally, we proposed the use of Alluvial diagrams as a visualization mean. This
approach is fleshed out in CustomDIFF, a DW tool that uses git as the operational
system, and pure::variants as the SPL framework. The approach has been
motivated and evaluated by Danfoss Drives SPL engineers. Primary evaluations
reveal promising results on CustomDIFF’s usefulness for customization analysis.

Main limitations of the approach are the that ETL process depends on the
variability approach, the VCS, and the branching model used. So far the approach
works for annotation-based SPLs, git VCS, and branching models that keep the
development of core-assets and products in separate branches. Another limitation
of the approach, is that the approach focuses on the code assets and left aside
other type of artifacts (e.g. models, documents). Future lines include extending
the approach for other VCS and branching models, and other asset types.

Additionally, we would like to further evaluate CustomDIFF in different
companies to measure its effectiveness along two parameters: the SPL maturity
(which might impact the customization effort) and the SPL size (the larger the
number of core-asset and products, the more compelling the need for abstract
visualizations). In addition, we have so far focused just on two dimensions: “the
what” and “the where”. It would be of interest to study how to supplement Git
data with data coming from other sources to collect information about products,
customers and developers, and to see what other kind of analysis this additional

125

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

sources would allow for. After all, DW are thought for integrating heterogenous
data sources.

Another follow-on is to go beyond analysis into action. CustomDIFF is an
analysis tool and hence, it does not preclude the customization practice as such, in
the sense of determining how to proceed during the pruning stage. An interesting
development would be using CustomDIFF within a DevOps framework where the
customization effort (at its different abstraction levels) is tracked, and reactions
can be attached to a certain customization-effort threshold being surpassed. Other
scenarios include the use of CustomDIFF by product engineers to gaze what
other mates are customizing. For instance, a feature enhancement introduced in a
given product might be promptly and directly incorporated into other products,
without waiting for this enhancement to be promoted as a core-asset. This
opens new scenarios for SPL evolution where “longitudinal evolution” (between
core-assets and products) might well co-exist with “traversal evolution” where
products sharing same features might decide to incorporate enhancements from
other products, and later on, be jointly pruned (this is addressed in the next
Chapter). The final aim is to find ways to alleviate the tension between the quality
and re-use effectiveness required by domain engineers, and the time-to-market
and customer pressure put on application engineers.

126

Chapter 4

Peering into peers

4.1 Overview
In the previous Chapter we addressed customization analysis, i.e. the practice by
which engineers analyze product customizations, so that (a subset of these) are
identified and promoted to the core-asset base. Customization analysis is the first
step towards the pruning phase. Once the interesting functionalities are identified,
these need to be propagated to the core-asset base. However, this practice might
end up in the so-called “merge problem” (a.k.a. integration hell, or merge hell).

In this Chapter 1, we look at how to lessen the “merge problem” in SPLs.
We advocate for making application engineers aware of potential coordination
problems right during coding, rather than deferring it till merging time. To
this end, we introduce the practice of code peering, i.e. the practice whereby
product engineers inspect and compare other products’ code with their own code,
and if interested, merge the other product’s code into his/her own product. We
discuss four design principles that drive how code peering can be introduced
for SPL development. As a proof-of-concept we developed PeeringHub, a tool
tool that supports code peering through: (1) a Chrome extension that enhances
GitHub with peering bars that provide brief information about what features are
other peers changing, (2) a DW solution (similar to the previous Chapter) that
provides alluvial-based high-level visualizations indicating the features available
for code peering, and (3) feature-based 3-way comparisons so that product
engineers can analyze how a given product is changing the code of a given

1The content of this Chapter has been accepted for publication in the International Conference
of Software Product Lines (SPLC’18).

127

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

feature w.r.t its own. A 13-minutes video showcasing PeeringHub is available
at https://tinyurl.com/y7pe79h4.

Next Section provides the problem definition.

4.2 Problem definition
Following the grow-and-prune model, product customization (i.e the growth)
needs to be cleaned up by merging and refactoring (i.e. pruning) [FV03].
Implementation wise, this is supported through Version Control Systems (VCSs)
[WS02a]. VCSs support parallel development of software by maintaining a
line of development (the master or trunk) with branches off this. For SPLs,
the master holds the core assets while branches can stand for SPL products
[FSK+16]. Product branches help to address product specifics in a secluded
setting: developers can add commits to their local repository (grow) and
completely forget about companion product developments till they are (fully or
partially) merged back to the master (prune). At this time, however, resolving
integration issues might be too demanding [mer]. Living on their own, products
might diverge too much from each other, a known issue when communication
channels are poor [DSB05, TMMK11]. Due to this issue the following problem
arises: merging and refactoring product customizations is difficult and time-
consuming.

Refer to Figure 4.1, which depicts the problem definition as a mind map, and
outlines the causes and consequences of the problem. Refer to Chapter 1 for a
detailed description on the root-cause analysis of the problem (i.e. cause and
consequences of the problem). The reader is encouraged to interact with the mind
map at https://tinyurl.com/y9fqucpe. The nodes can be unfolded to uncover the
supporting evidences for each of the claims.

To alleviate this situation, we propose to make application engineers aware
of potential coordination problems right during coding rather than deferring it
till merging time. This idea might seem counter-intuitive. Product branches are
all about speeding up customer-demand satisfaction. By caring about posterior
merging, product engineers might delay this satisfaction. This begs the question
whether it is worth diverting developers’ attention for the sake of later merging.
We elaborate this issue with the help of the theory of Attention Investment
[Bla02]. This theory is based on the premise that most decisions to start
programming activities are based on an implicit cost-benefit analysis. In our
setting, the cost is that of somehow tuning your code to that of your peers.

128

https://tinyurl.com/y7pe79h4
https://tinyurl.com/y9fqucpe

Chapter 4. Peering into peers

Figure 4.1: Mind map depicting the root-cause analysis for peering into peers.
Interact with it online at https://tinyurl.com/y9fqucpe.

But there exists also important benefits: early reuse. After all, products are all
generated from the very same set of features, and hence, they share most of their
code. If code is changed for a product’s feature (e.g. bug fixing), then other
products reusing that feature might be interested in the change. This scenario
raises different questions. How can application engineering teams be aware
of what others are doing without compromising their main duty (i.e. product
development)? Which changes from other peers should they pay attention to?

In addressing these questions, this paper makes the following contributions:

1. a description of the roles and interactions that intermingle in a grow-and-
prune approach to SPLs, motivated by the Danfoss case.

2. a characterization of the merge problem and how it differs from the merge
problem that also appears in traditional single-system development. We
propose a new practice, code peering, as a possible way to alleviate it.
This begs the question whether it is worth diverting product developers’
attention for the sake of making easier the subsequent pruning by domain
engineers. Using the theory of Attention Investment [Bla02] as a narrative,
we introduce four design principles that drive how code peering can be
introduced for SPL development.

3. a realization of these principles using GitHub as the VCSs, and
pure::variants as the SPL framework. As a proof-of-concept we developed

129

https://tinyurl.com/y9fqucpe

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

PeeringHub, a tool that supports code peering through: (1) a Chrome
extension that enhances GitHub with peering bars that provide brief
information about what features are other peers changing, (2) a web-
based application that provides alluvial-based high-level visualizations
indicating the features available for code peering, and (3) feature-based 3-
way comparisons so that product engineers can analyze how a given product
is changing the code of a given feature w.r.t its own.

We start by characterizing the grow phase.

4.3 Characterizing the grow phase
This Section outlines the grow process, based on the Danfoss case. As a
running example, consider the WeatherStationSPL, an SPL for building web-
based applications for weather stations2.

t2
master

productDonosti

productNewYork

productDenmark

productLondon

time

Baseline-v1.0

t1 t3

Peering from to
Legend

Commit

Git Repository

Figure 4.2: WeatherStationSPL branching model: the master branch holds the
core assets baselines from where SPL products are branched off. At time t3
productDenmark conducts code peering.

2This example is slightly different form the one presented in Chapter 3.

130

Chapter 4. Peering into peers

Platform
Release Plan

final_release_to_customer()

loop [for each enhancement]

work_on
enhancement()

verification_pass()

set_of_criticalties

commit_fix()

work_on
issue()

Product
Release Plan

notify_done()

send_sw_pack
_config() commit()

Core
Team

Software
Developer

Version
Control Quality

Assurance

Change
Management

verify_new_config()
failed_tests

new_issue()

create_product_branch()

fix_issue()

notify_fixed()
verify_fixed()

failed_tests

UAT_validate()

decide_criticalities()

develop_
enhancement()

notify_
enhancement()

verify_enhancement()
failed_tests

incorporate_enhancement
_next_release()

validation_pass()

[critical == false]

loop [while failed_test == true]

alt [critical==true]

loop [for each enhancement]

alt [validation == true]

loop [while failed_test == true]

loop [for each package/configuration]

loop [for product]

prioritize_issues()

Customer
Platform
Release
Manager

commit_
enhancement()

set_of_enhancements

new_platform_release()

Figure 4.3: Sequence diagram depicting the grow stage.

131

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure 4.2 depicts a certain stage in the WeatherStationSPL evolution. So far,
this SPL has undergone a single core-asset baseline release at the master branch,
i.e Baseline-v1.0, that holds seven features realized through 30 code assets.Let
us consider that customers urge to account for product specifics with no time to
wait for the next core release. As a result, Baseline-1.0 might be branch off into
productDonosti, productNewYork, productDenmark and productLondon.

Figure 4.3 displays the main roles and interactions along the lines of the
Danfoss experience. The interaction starts with the Platform Release Manager
delivering a new release of the core assets (in the master branch using the Version
Control agent). Next, the Core Team3 branches off for each product where
product configurations are tested out. The diagram highlights the two main
triggers of the grow stage: bug fixing (verification) and product enhancements
(validation). The former involves the Quality Assurance actor while validation
results from User Acceptance Testing (UAT) with the Customer. Both, bugs and
enhancements requests, are first communicated to the Core Team, which is the one
that sets priorities and commands development. Both verification and validation
activities are handled through the Change Management agent.

Figure 4.3 highlights the interactions with the Version Control agent (in
bold): product branches are created by the Core Team, and elaborated upon
by the Software Developer. Eventually, product branches are merged back into
the master, and merge issues are resolved by the Core Team (not shown in the
figure). Merge conflicts arise when Software Developers were working on the
same codebase. The likelihood of this situation very much depends on the size
of the merge, which in turn, it is influenced by the time span from the last merge.
For Danfoss, this timespan is two weeks.

4.4 The merge problem
This section tackles the merge problem in an SPL setting. This problem is being
studied for single-system development [Duv07]. This issue rises when long-living
branches are merged back into the master branch. Here, the amount of code to be
integrated might exceed the time it took to make the original changes, leading to
the so-called “integration hell” [mer]. The likelihood of this situation very much
depends on the size of the merge, which in turn, is influenced by the time span

3Members of Core Team are Release Manager, Product Manager , Project Manager (who
interacts with developers and Platform Manager) and a person from the verification and validation
team (QA) to understand on the schedules and testing.

132

Chapter 4. Peering into peers

Time

Ch
an

ge

A long time

Lots of lines
of code

Figure 4.4: The merge problem illustrated: the time since the last merge and the
amount of changes introduced since then, exacerbate the merge problem.

from the last merge. Figure 4.4 depicts this situation. The larger the span, the
harder the integration. Developers should then aim at frequent merges, easy to be
integrated with the base code.

However, in SPLs, product customization cannot be readily made available
at the master. First, they need a proving time at the product realm before
being promoted to core assets. Hence, if we cannot always reduce the merge
granularity by frequent integration, we can alternatively attempt to make product
engineers “merge-minded”. That is, making application engineers aware of
potential coordination problems right during product coding rather than deferring
it till merging time. However, to what extent is diverting developers’ attention
worth, for the sake of the posterior merging? We elaborate this issue with the help
of the theory of Attention Investment.

This theory is based on the premise that most decisions to start programming
activities are made based on an implicit cost-based analysis [Bla02]. Specifically,
the following parameters are introduced:

• Investment: the attention expended toward a potential reward, where the
reward can either be external to the model (such as payment for services)
or an attention investment pay-off. Back to merging, caring for integration
during product development requires an extra effort of comparing your code
with someone else’s.

• Pay-off: the reduced future cost that will result from the way the user has
chosen to spend attention. Back to merging, the comparison effort might
payoff in two main ways. First, promoting early reuse. If a feature’s code

133

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

is changed in product, then, this change would likely be of interest to other
products that exhibit the same feature. Second, a developer who sees an
opportunity to incrementally improve the quality of the codebase might
somehow tune his/her code to facilitate late merging.

• Risk: the probability that no pay-off will result (specification failure), or
that additional costs will be incurred (bugs). At this respect, it is being
documented that the type of small but broad refactorings that can gradually
improve a codebase—or stop it gradually degrading—are exactly the type
of changes that often lead to a merge conflict [sem].

The hypothesis is that providing developers with integrated support for
product-branch comparison would promote early reuse and small refactoring
improvements, on the search for easy merging back into the master branch. Next
Section characterizes this challenge which is referred to as “code peering”.

4.5 Characterizing “code peering” in SPLs
Code peering is the process whereby developers look into someone else’s code
w.r.t. their own code. Specifically, developers look at sibling branches, i.e.
branches that conduct customizations on products (i.e. the observed products)
that share at least one feature with the product at hand (i.e. the observer product).
Hence, code peering involves comparisons between the observed products and the
observer product w.r.t. a common ancestor, i.e. the master branch. This requires
a three-way file comparison: 3WAYDIFF (base, observed, observer). Figure
4.5 depicts how a 3WAYDIFF (Baseline-v1.0, productDonosti, productDenmark)
looks like in KDiff34, a popular three-way comparison tool (for a larger list on
three way comparison tools refer to [3wab]). The base (a.k.a “common ancestor”)
provides the reference point for conducting the comparison. Using the base as
the reference, KDiff3 compares (1) the observed vs. the base, (2) the observer
vs. the base, and (3), the changes in both the observed and the observer to
each other. For instance, Figure 4.5 highlights that productDonosti’s version
of the sensors.js file, holds an if-clause (yellow background) that is not present
in productDenmark’s. Without the presence of the base (i.e. Baseline-v1.0),
we would not know whether productDenmark did remove the if-clause from the
base, or instead, it was productDonosti the one that included the if-clause. The
comparison with Baseline-v1.0 shows this up.

4http://kdiff3.sourceforge.net/

134

http://kdiff3.sourceforge.net/

Chapter 4. Peering into peers

VP-1

VP-2

1
3

2

A B C

Figure 4.5: A 3-way comparison in KDiff3 for sensors.js. The comparison
involves three branches (see Figure 3.2): Baseline-v1.0 (A), productDonosti
(B) and productDenmark (C). Note how sensors.js is being changed in
productDonosti for two variation points: VP-1 and VP-2.

KDiff3 is a powerful tool for code comparison in single-system development.
Next, we frame code comparison within the grow-and-prune model. Here, code
comparison is conducted for alleviating branch merging within an SPL setting.
Next subsections elaborates on the implications in terms of design principles that
might guide the introduction of code comparison in SPLs.

4.5.1 Code comparison for alleviating branch merging

Code peering encourages easy merging. This might be an ancillary activity from
an AE perspective, as for them, product development comes first. Therefore, the
attention capital available for code peering is limited. Implications are twofold.
First, code peering should not interrupt product development. Second, if the
peering effort goes beyond a certain threshold, the benefits might not payoff. On
these premises, two design principles are introduced.

135

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Seamless integration with VCSs. The need for code peering arises when
conducting product development in VCS’s branches. Hence, easy access from
VCSs becomes paramount to promote “code peering” right at the place where the
need emerges.

Respect focus. Along the theory of Attention Investment, the design should
respect the fact that developers should control their own focus of attention.
Product development should not be interrupted with merging concerns but
developers should choose the appropriate moment. One might think that by letting
developers decide, the appropriate moment for conducting code peering would
never happen, as they would be too busy. Following the attention investment
theory, we argue that making developers aware of early reuse mitigates this.
Nevertheless, the development process should enforce developers to conduct
code peering when developing, i.e. product developers should “look” for reuse
opportunities in other peers just like they would do with domain assets.

4.5.2 Code comparison within an SPL setting

Feature-centricity. SPL development is basically feature-centric, i.e. most
bug fixing and functional upgrades are conducted within a feature. Certainly,
products can add brand-new functionality. However, our focus is on upgrades
on existing features. This feature-centricity should percolate code comparison.
That is, code comparison should be in terms of features, not just files or folder.
Developers wonder “what features have been upgraded by my peers”, and not
“what files/folders have been updated”. This requires a clear understanding of
feature boundaries and an explicit feature-to-code mapping.

Abstraction. SPLs are reckoned to exhibit a large number of features and
products. Hence, even if we limit our attention to the features of the product
at hand, the number of sibling products (i.e. those with overlapping features)
can still be quite large. Code-based comparison might not scale up. Conducting
traditional KDiff3-like comparison for each file within each product would end up
in hundreds (if not thousands) of KDiff3 displays. This might put developers off.
But even if they are dedicated enough, developers might overlook some interesting
upgrades, hidden in the plethora of changes. Hence, mechanisms are needed that
abstract away from raw code into higher-level visualizations.

136

Chapter 4. Peering into peers

4.6 PeeringHub: a peering utility for GitHub
This section realizes the aforementioned principles for KDiff3 as the DIFF tool,
Github as the VCSs, and pure::variants as the SPL framework [pur]. We first
outline these tools, and next, address how they have been integrated and adjusted
for “code peering”.

Pure::variants. It is a framework for annotation-based SPLs. Figure 4.5-
A shows a snippet of the core asset sensors.js at Baseline-v1.0. This snippet
shows two variation points, i.e. VP-1 and VP-2. In pure::variants, a variation
point starts with the opening directive //PV:IFCOND, and ends with a closing
directive //PV:ENDCOND 5. Core assets can be branched off for verification
(corrective maintenance) or validation (perfective maintenance) purposes. Figure
4.5 highlights changes when comparing productDonosti (B) vs. productDenmark
(C). Two variation points (i.e. feature expressions) are impacted: VP-1 and VP-2,
that account for features AirPressure and WindSpeed, respectively.

GitHub6. It is the largest git repository hosting site [GVSZ14]. Github
became “the social meeting point” for software developers working on the
same repository. This “social activity” includes: branch comparison, pull-
requests creation, conducting code-reviews, open/close issues, leave comments,
see statistics and so on. This “social character” makes GitHub also a suitable
place for code peering. Although GitHub has been made popular for open-source
development, it is also popular for companies developing commercial software
too [KDB+15b].

4.6.1 PeeringHub: code peering in GitHub

PeeringHub is a Chrome extension for GitHub. This extension enhances GitHub
with three main utilities: peering bars, alluvial diagrams, and KDiff3 enactors.
PeeringHub has been designed along the aforementioned principles.

Seamless integration with GitHub. PeeringHub resorts to Web Augmentation
[DA15] to enhance GitHub with code peering. This permits developers to keep
using their URLs as usual. The new functionality is realized in terms of inlayed

5These variation point patterns only hold for code files. For example, in XML and HTML files,
variable elements are annotated in an attribute called condition.

6http://github.com/

137

http://github.com/

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

HTML elements (see next). Seamlessness is sought by using the same CSS classes
and aesthetics of the hosting pages.

Respect focus. Code peering should not imply constantly popping up code
differences. This would have been very annoying. Rather, developers should be
able to consult about differences anytime they see appropriate. That said, giving
full control to developers does not tell the whole story, because there is also an
attention cost involved if the system simply waits for developers to proactively
ask questions. Peering bars provide a middle way. Before delving into the
bar itself, it is worth discussing where this bar is going to be integrated. The
“respect focus” principle suggests the bar to be close to where the decision is to
be taken. If code peering is conducted before initiating a development task, or at
the end of the development task, this places the central repository (where the issue
tracking system is) as the first option. Else, if code peering is conducted while in
development, this places the IDE (e.g Eclipse) as the first option. We decided to
integrate the peering bar as part of the GitHub interface, as a way to provide an
IDE-indepent solution, since each developer (at least at Danfoss) can develop with
his/her preferred IDE.

Peering bars mimic GitHub’s language bars. Figure 4.6 shows the case for
the productDenmark branch. To avoid distraction, the peering bar is initially
collapsed: the existence of product customization is indicated but not the extent of
this customization. Additional information requires for developers to proactively
click on the bar. For our example, this will result in displaying the extent to
which other products are altering productDenmark’s features. Should a large
number of features be involved, the display limits itself to those features that
have received most attention, i.e. those features that have been subject to most
customization in the productDenmark branch. Therefore, the peering bar displays
changes dynamically as productDenmark is being customized. In this way, and
without leaving GitHub, developers can assess whether it might be worth to zoom
into the raw code or not. This bring us to the next principle.

Abstraction. PeeringHub gradually unveils the customization effort through
three visualizations: bars, alluvial diagrams and finally, raw-code differences. A
peering trail is built-in through hyperlinks that permit to move forward along these
different visuals.

This trail starts at peering bars. These bars show aggregated feature-based
customization efforts (see Figure 4.6). Click on these eye-shaped figures for these

138

Chapter 4. Peering into peers

Peering Bar

Figure 4.6: Product-branch display in GitHub. The inlayed peering bar hints
customization endeavors i for the productDenmark’s features.

aggregates to be broken down through alluvial diagrams. These diagrams are
a type of flow diagram originally developed to represent how multiple groups
relate to one another across several variables [All]. Here, code upgrades are
characterized along two variables: the product (where the upgrade is conducted)
and the feature (that scopes the upgrade within a variation point). Figure 4.7
shows the case for our running example. The diagram depicts “the customization
effort” that goes from the observer product (e.g. productDenmark) to the features,
and next, from the features to the observed products (e.g. productDonosti,
productLondon and productNewYork). This effort is measured in terms of the
number of lines (LOCs) added/deleted (a.k.a the code churn), and it is reflected
through the width of the flow arc.

Looking at Figure 4.7, we can promptly appreciate how productDenmark
is customizing the WindSpeed feature the most. Additionally, we can notice
how both productDonosti and productNewYork also customize WindSpeed, being
productDonosti the one with the largest customization effort (the arch flow stream
to WindSpeed is the widest). Alluvial diagrams also help to promptly appreciate
which variables are more clustered (fewer, wider arch flows) and which are
more distributed (more, narrower arch flows). For instance, productDonosti is

139

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

“Our product”

“Features our
product is reusing”

“Other products
customizing
the features”

Figure 4.7: Alluvial diagrams reachable from peering bars. The display shows
two flows (i.e. customization efforts): (1) from productDenmark into its features,
and (2), from productDenmark’s features to sibling SPL products.

140

Chapter 4. Peering into peers

Asset at version:
Baseline-v1.0

A

Asset at version:
Baseline.v1.0 +

[product Donosti’s changes to
WindSpeed]

Asset at version:
Baseline.v1.0 +

[product Denmark’s
changes to WindSpeed]

B C

1

Figure 4.8: KDiff3 enactment that results from clicking on the (WindSpeed,
productDonosti) arch in Figure 4.7.

considerably more customized than the other two products, whereas the Heat
feature has not been customized by any product at all. In this way, alluvial
diagrams provide an abstract view of the customization effort. A flow arc (P,
F) stands for the customization effort that product P conducts in feature F. The
width of the arc denotes the amount of this effort. However, we do not yet see the
concrete LOCs being added/deleted. This brings us to KDiff3.

Flow arcs account for enactors of 3WAYDIFF (base, observed, observer)
comparisons. Specifically, when working on the P1 product branch, a flow
arc (P2, F) holds an enactor to KDiff3(base, P2, P1)7. For instance, by
clicking on the arc (productDonosti, WindSpeed), KDiff3 will be launched in your
desktop to show 3WAYDIFF (baseline-v1.0, productDonosti, productDenmark).
Unfortunately, a straight invocation to KDiff3 will highlight all the changes
that both, productDonosti and productDenmark, have performed to the baseline.
This means that changes to all the features will be highlighted. Hence, the
feature of the flow arc “has been lost in translation”. What is needed is
a “feature-aware” 3-way diff, i.e., 3WAYDIFF (baseline-v1.0, productDonosti,
productDenmark)[WindSpeed], so than only the changes to the feature WindSpeed

7This requires KDiff3 to be locally installed, as well as, to grant permission to the protocol
kdiff:// so that KDiff3 can be launched from the browser. This can be achieved by running
a lightweight script, such as the following for Mac OS X https://gist.github.com/
letimome/4f8bd099c74f5226b98b09976f6812b7.

141

https://gist.github.com/letimome/4f8bd099c74f5226b98b09976f6812b7
https://gist.github.com/letimome/4f8bd099c74f5226b98b09976f6812b7

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

are shown (as in Figure 4.8). This moves us to the next requirement.

Feature-centricity. Alluvial diagrams hold arcs from features to observed
products. That is, arcs are anchored on features. Hence, differences need to be
shown between the observer product and the observed product, but for the feature
at hand. That is, the code should just focus on the feature being looked into. This
means that we need to “build” versions of productDonosti and productDenmark,
with only the changes that they introduced for the WindSpeed feature. So, that
when KDiff3 is launched only the changes to the feature WindSpeed are shown.
To this end, PeeringHub proceeds in three steps.

• first, it conducts diff(base, observer) and diff(base, observed). Figure 4.9
(left) shows the diff-output (a.k.a patch) for diff(Baseline-v1.0.sensors.js,
productDonosti.sensors.js)8,

• second, it slices the diff-outputs in terms of features. Figure 4.9 (right)
shows the “featured” patches for the diff-output sample (left). This results in
a patch for each variation point: patchVP-1, patchVP-2 and patchVP-3. VP-
1 impacts AirPressure. VP-2 impacts WindSpeed. And most interestingly,
VP-3 impacts WindDirection but also WindSpeed since it is nested within
VP-2,

• third, patches behave as functions, i.e. they list the code lines being
added or deleted. If you apply a patch to a file, it returns the file
with the patch directives (addition/deletion) being performed. Therefore,
applyPatch(Baseline-v1.0, patchVP-3 patchVP-2) returns a version of
productDonosti with only the changes performed to the WindSpeed feature
since derived from the baseline.

• forth, KDiff3 is launched with the “featured” versions of both the observed
and the observer. The outcomes are shown shown in Figure 4.8(B) and
(C) respectively, after PeeringHub conducts these operations transparently.
Unlike Figure 4.5, now the outcome limits itself to changes that impact
WindSpeed alone. In this way, 3-way comparison is adjusted to SPL
specifics, i.e. feature centricity.

8Due to space limitations Figure 4.9 does not show the diff(Baseline-v1.0., productDenmark)

142

Chapter 4. Peering into peers

VP-2

VP-3

patchVP-1VP-1

patchVP-2

patchVP-3

Figure 4.9: Feature-based slicing for diff(Baseline-v1.0.sensors.js,
productDonosti.sensors.js). The diff-output (left) is broken down based on
variation points (right). Each slice accounts for a patch function.

4.7 Evaluation

This section predicts the acceptability of PeeringHub based on the Technology
Acceptance Model (TAM) [Dav89]. TAM proposes that the readiness of a user
to use (or not to use) a new technology is determined by her attitude towards
the technology. This attitude is influenced by two beliefs which are perceived
usefulness and perceived ease of use. Perceived usefulness is defined as “the
degree to which a person believes that using a particular technology would
enhance his or her job performance” [Dav89]. On the other hand, ease of use
refers to “the degree to which a person believes that using a particular system
would be free of effort” [Dav89]. Therefore, we aim at analyzing the use of
PeeringHub for the purpose of evaluating its usefulness and ease of use with

143

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

respect to conducting code peering from the point of view of product developers
in the context of annotation-based SPLs.

Six participants took part on the evaluation. Participants were introduced to
the tool, by a short demo available at https://vimeo.com/262269218.
Afterwards, they were introduced to the WeatherStationSPL. They were asked to
conduct code peering using PeeringHub, as if they were engineers working for the
productDenmark product. Specifically, the following tasks were proposed:

• Task 1: Which products are changing features also used by your product
(i.e. productDenmark)?

• Task 2: Which products are customizing the WindSpeed feature? List them.
Which is the product that is customizing WindSpeed the most?

• Task3: For the previously identify products, list lines of code being added
to the WindSpeed feature.

During the session, a researcher was observing participants’ interactions with the
tool. Next, an on-line questionnaire was delivered to assess usefulness and ease of
use. Table 4.1 gathers the results where agreement with statements is rated along
a LIKERT scale that ranges from 1 (“Strongly disagree”) to 7 (“Strongly agree”).
Davis’ template was used for evaluating both usefulness and ease of use.

Participants rated PeeringHub with an average of usefulness and ease of use of
6.36 and 6.48, respectively. Although results are rather encouraging, they should
be interpreted with caution, as some threats to validity need to be considered.
Internal validity is concerned with the conduct of the study. Here, the treatment is
the use of PeeringHub to address code peering. We cannot claim PeeringHub to
be tested in a real scenario, as it was conducted by SPL researchers with a sample
SPL. Also, this work is based on insights from the Danfoss setting. This setting,
i.e. the SPL size, the number of developers or the SPL maturity, might change
for other companies that might rise issues not addressed here. Finally, external
validity tackles the representativeness of the study, and the ability to generalize
the conclusions beyond the scope of the study itself. At this respect, we believe
our insights can be of interest to SPLs other than Danfoss’. Wherever product
branches are permitted, the risk of difficult merges shows up. Code peering, and
PeeringHub, might alleviate this scenario. While this evaluation provides some
initial evidence that the proposed tool could be useful and easy to use for code
peering, it is only a starting point for a more large-scale evaluation. We still need
to evaluate whether conducting code peering with PeeringHub can alleviate the
merge problem.

144

https://vimeo.com/262269218

Chapter 4. Peering into peers

Item for usefulness: P1 P2 P3 P4 P5 P6 Avg.
Using PeeringHub would enable
me to accomplish code peering
tasks more quickly

7 7 7 6 6 7 6.66

Using PeeringHub would increase
my productivity on code peering

6 7 6 5 7 7 6.33

Using PeeringHub would enhance
my effectiveness on the code
peering job

6 6 6 5 6 7 6

Using PeeringHub would make it
easier to do my job w.r.t. code
peering

7 6 6 6 5 7 6

I would find PeeringHub useful for
code peering

7 7 7 7 6 7 6.83

I would find PeeringHub useful in
my job

7 7 4 7 7 6 6.33

Total 6.66 6.66 6 6 6.16 6.83 6.36
Items for ease of use: P1 P2 P3 P4 P5 P6 Avg.
Learning to operate with
PeeringHub would be easy for me

7 7 7 7 6 7 6.83

I would find it easy to get
PeeringHub to do what I want it to
do

7 7 6 6 5 7 6.33

My interaction with PeeringHub
would be clear and understandable

5 7 6 6 7 7 6.33

I would find PeeringHub to be
flexible to interact with

7 6 5 6 6 6 6

It would be easy for me to become
skillful at using PeeringHub

7 7 6 7 7 7 6.83

I would find PeeringHub easy to
use

6 7 6 7 7 7 6.66

Total 6.5 6.83 6 6.5 6.3 6.8 6.48

Table 4.1: PeeringHub perceived usefulness and ease of use based on Davis’
template.

145

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Ref. The subject of change

(what)

Purpose (why) Change Detection

Means (how)

SPL type

[CKM+08] Story-based

requirements

Feed-back Asynchronous

communication

na

[HR10] Requirements,

Variability model

Feed-back Monitoring na

[LG15] Variability model Increase awareness of

changes in products

Monitoring Composition

[MBKM08] Clone code Feed-back Levenshtein distance Annotation

[PTS+16] Code Product synchronization Monitoring Clone&own

[SSRS16] Code Update propagation Diff Annotation

[aSSLX+18] Code Identifying features in

forks

Diff Clone&own

PeeringHub Code Alleviate the merge

problem

Diff Annotation

Table 4.2: Related work on monitoring the application engineering process.

4.8 Related work

PeeringHub monitors the application-engineering process. Differences with other
works mainly stem from what is being monitored, how is being monitored, and
why is being monitored. Table 4.2 outlines the outcome that also includes the type
of SPL being targeted. Next, the comparison is arranged along the “what”, i.e.
the artefact being monitored.

Requirements. Here, product engineers are instructed to suggest eventual
SPL requirements to domain engineers (a kind of feed-back propagation).
In Carbon et al. [CKM+08], product engineers resort to reuse stories to
communicate changes in SPL requirements to domain engineers. This approach
adapts the agile practice “planning game” to SPLs [CKM+08]. In a similar vein,
Heider et al. also advocate for SPL requirements to be fed from requirements
risen during application engineering [HR10]. Unlike Carbon et al, Heider et al.
do not require explicit intervention of product engineers, but rather, application
engineering is being transparently monitored at the requirement level. To this
end, authors introduce EvoKing, a tool that monitors requirement-level activities
by product engineers. Domain engineers can afterwards decide about each
requirement being implemented at the product level or SPL level. This tools
was later used in [LG15] through the notion of “features feeds”. Domain

146

Chapter 4. Peering into peers

and application engineers can subscribe to the variability model elements, i.e.
configuration units, features and variation points (elements in the Common
Variability Language [HMO+08]). Say a product engineer needs to add a new
feature to a product, and hence, she adds a new feature to the configuration
unit CU1. Engineers (both domain and application ones) subscribed to CU1
will be notified. Next, when the new feature is implemented, product engineers
can propose their implementation to be promoted as reusable, and if so, other
engineers can incorporate it into their developments.

PeeringHub differs from the aforementioned approaches in all: the target
audience (domain engineers vs. application engineers), the artefact being
monitored (requirements vs. code) and the SPL stage (requirement analysis vs.
code development). At this respect, EvoKing and PeeringHub complements
each other: requirement feed-back can be conducted through EvoKing; next,
assigned to different product-engineering teams whose efforts and synergies are
later tracked through PeeringHub. Monitoring wise, EvoKing requires product
engineers to explicitly subscribe to the features they are interested in. By contrast,
PeeringHub resorts to the heuristic of “subscribing” products to those features
that are being more intensively updated from those exhibited by the product at
hand. Though products might potentially exhibit a large number of features, the
heuristic limits the focus to only those features being upgraded in a short turnover
(two weeks for Danfoss), hence averting the scalability issue in the presence of
large feature models.

Source code. Mende et al. [MBKM08] tackles clone detection among
functions during product customizations. To this end, they resort to the
Levenshtein distance to measure the similarity between clones. They also propose
metrics that aggregate similarities at the architectural level to sustain the need for
the pruning phase. For the growing phase, Schulze et al. [SSRS16] address update
propagation in Pure::Variants where products are upgraded with newer versions
of the core-assets. Similar to our approach, authors resort to a 3-way diff/merge.
However, the compared commits are different. Given a product generated out of
BASELINE-1, they are interested in upgrading it with a new release of core assets,
e.g. BASELINE-2. Therefore, their 3-way diff looks like: 3WAYDIFF (BASELINE-
1, BASELINE-2, PRODUCT). By contrast, our approach looks for differences
between products generated out of the same baseline. That is, our 3-way diff
looks like: 3WAYDIFF (BASELINE-1, PRODUC-1, PRODUCT-2).

For clone&own SPLs, Pfofe et al. [PTS+16] address change synchronization
between cloned products. Their tool, an eclipse plugin called VariantSync, tracks
changes as engineers conduct product development. Afterwards, developers

147

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

need to tag these changes to feature expressions, and the tool aids engineers
on automating propagating those changes to products sharing the same feature
expression. Although thought for fork-based development in open-source
projects, the work presented by Zhou et al. [aSSLX+18] comes close to ours.
Notice that forking is a common approach in clone&own SPL (e.g. [RKBC12]).
In open-source projects, forks (i.e. a clone of a whole repository) can be interested
in what related forks are doing. Zhou et al. propose a tool that compares each
fork with the Main repository from where forks were derived. Unlike annotated
SPLs, no explicit feature-to-code mapping exists so authors need to rely on both
concern location and dependency analyses in order to identify features in forks.
Finally, clone&own SPLs are regarded as the “first step” towards a fully-integrated
SPL approach [AJB+14b, RCC13]. In this sense, Antkiewicz et al. [AJB+14b]
and Rubin et al. [RCC13], propose roadmaps as to iteratively transition from a
clone&own setting towards a fully-integrated SPL platform.

Back to PeeringHub, our efforts are not so much about concern location
(since changes happens within the scope of a variation point) but at integrating
the practice of “peering” as part of product enginering process. This moves
visualization and gradual unveiling to the forefront.

4.9 Conclusions
This chapter proposes code peering as a way to lessen the merge problem during
the pruning of product customizations. Using the theory of Attention Investment
as a narrative, we introduce four design principles that drive how code peering
can be introduced in SPLs. These principles are realized through PeeringHub,
a prototype composed by: (1) a Chrome extension that enhances Github with
Peering bars, (2) a web-based application that visualizes code peering by means
of alluvial diagrams, and (3) feature based 3-way comparisons.

While we got some initial evidences that the proposed tool could be useful and
easy to use for code peering, a more large-scale evaluation should be conducted,
that can shed some light as whether conducting code peering (with PeeringHub)
can alleviate the merge problem.

Next follow-on activity is to measure PeeringHub effectiveness along two
parameters: the SPL maturity (the less mature, the larger the need for code
peering) and the SPL size (the larger the number of core asset and products,
the more compelling the need for abstract visualizations). The impact of code
peering can be measured not only in terms of facilitating branch merging, but

148

Chapter 4. Peering into peers

also changing how product engineering is conducted. For instance, a feature
enhancement (e.g. a bug fix) introduced in a given product might be promptly and
directly incorporated into other products, without waiting for this enhancement
to be promoted as a core asset. This opens new scenarios for SPL evolution
where “longitudinal evolution” (between core assets and products) might well co-
exist with “traversal evolution” where products sharing features might decide to
incorporate enhancements from other products, and later on, be jointly pruned.
The final aim is to find ways to lessen the tension between the quality and re-use
effectiveness required by domain engineers, and the time-to-market and customer
pressure put on application engineers.

149

Chapter 5

Synchronizing core-assets and
products

5.1 Overview
In Chapter 4 we addressed the merge problem that arises during the pruning of
product customization. Herein, we proposed code peering, i.e. a practice that
promotes early reuse across products during the grow phase, with the aim of
reducing the merge problem implications.

This Chapter1, no longer focuses on preventive measures for the issues the
pruning might await. Once the interesting functionalities are identified, these need
to be propagated to the core-asset base, which after a successful integration, will
eventually be delivered to the already existing products. This introduces two sync
paths: update propagation (from DE to AE) and feedback propagation (from AE
to DE).

We look at how to support these sync paths using traditional Version Control
Systems (VCSs) constructs (i.e. merge, branch, fork and pull). In this way,
synchronization mismatches can be resolved à la VCS, i.e. highlighting difference
between distinct versions of the same artifact. However, this results in a
conceptual gap between how propagations are conceived (i.e. update, feedback)
and how propagation are realized (i.e. merge, branch, etc). To close this
gap, we propose to enhance existing VCSs with SPL sync paths as first-class
operations. As a proof-of-concept, we use Web Augmentation techniques to
extend GitHub’s Web pages with this extra functionality. This ends up in GitLine,

1The content of this Chapter has been previously published in [MD15].

151

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure 5.1: Depicting the problem definition for propagating changes between
core-assets and products with a mind map. Interact with it online at
https://tinyurl.com/ya777m2x.

a browser extension for Firefox that extends GitHub with sync operations for
SPLs. Through a single click, product engineers can now (1) generate product
repositories, (2) update products with newer feature versions, and (3), feedback
product customizations amenable to be upgraded as core-assets. A 8-minute video
showcasing GitLine is available at https://vimeo.com/145403689

This Chapter requires from the reader a basic understanding on VCS basic
operations, and branching strategies. The appendix C provides the reader with a
brief on git VCS, its basic operations, and points to popular branching models for
single-system development.

Next Section provides the problem definition.

5.2 Problem definition
Enacting the pruning requires propagating changes between core-assets and
products, so that both parties are synchronized. This introduces two sync paths:
the update path (from DE to AE), and the feedback path (from AE to DE) [Kru03]:

152

https://tinyurl.com/ya777m2x
https://vimeo.com/145403689

Chapter 5. Synchronizing core-assets and products

• Update paths serve two scenarios: configuration repair (synchronize
products configuration when variability model changes) [BM14] & product
upgrade (where latest versions of reusable assets are propagated to products)
[Kru03]. In the latter case, for every product derived from the original
core-asset, an update operation is required. If products have customized
the core-asset then, the update operation may require a manual merge for
each product [Kru03]. When to conduct the upgrade differs significantly
for the different products in the SPL. While some tend to upgrade rather
quickly, some do not upgrade for a long time, even when not close to the
product’s release [JB09].

• Feedback paths serve two scenarios: extending the scope of the product
line to emerging application engineering requirements [Kru03], as well as,
incorporating bug-fixes resolved in products [FSK+16]. The integration of
the feedback would result in changes to a set of core-assets, which may
require updates to be applied to all the products that reuse them [Kru03].

In order to preserve a correct, complete and consistent synchronization between
core-assets and products, Software Configuration Management (SCM) for SPL
development needs also to account for propagations. SCM is the discipline that
enables engineers to keep control and track software changes (i.e. evolution).
Some equate SCM to VCS tools. However, beyond configuration management
tools, policies and procedures are needed to guide developers in how to control
and manage the evolution of the core-assets and products[McG07]. In a nutshell,
SCM relies on both (1) tools to track changes to software assets, i.e. VCS, as well
as, on (2) policies for engineers that establish when and how to commit code, and
policies for branching and merging. If an organization chooses tools and practices
separately, their use may conflict, resulting in failure to carry out the practices
(e.g. SPL development and change propagation) properly [CN01a].

However, traditional VCSs tools are mainly thought for single-product
development. State-of-the-art VCSs such as Git/GitHub, provide the basics
but fall short in supporting sync paths between core-assets and products. All
Git/GitHub offers is the fork/branch mechanism. However, forking/branching
is not how products are derived. Likewise, GitHub’s pull request / merge is
also thought for synchronizing a whole repository/branch, hence lacking a more
piecemeal synchronization, i.e. only a subset of features or core-assets. Due to
this issue the following problem arises: both feedback propagation and update
propagation are time-consuming and error-prone.

153

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Refer to Figure 5.1, which depicts the problem definition as a mind map, and
outlines the causes and consequences of the problem. Refer to Chapter 1 for a
detailed description on the root-cause analysis of the problem (i.e. cause and
consequences of the problem). The reader is encouraged to interact with the mind
map at https://tinyurl.com/ya777m2x. The nodes can be unfolded to uncover the
supporting evidences for each of the claims.

This complexity calls for Version Control Systems (VCSs), accompanied by
branch and merge policies, not only to assist in managing the large number of
SPL artifacts, but also to help in synchronizing the AE and the DE realms. This
involves: (1) a model of what a CoreAsset repository looks like (a.k.a. branching
model), (2) a model of what a Product repository looks like, and (3), a set
of operations to keep both models in sync. In this setting, this work’s main
contributions rest on:

1. a repository architecture, which distinguishes between the CoreAsset
repository, where domain engineering takes place, and Product repositories,
where product engineering occurs. This provides the data structure
branching model in which sync actions operate (Section 5.6).

2. the operational semantics for sync actions. Synchronization happens upon
artifact versions. The previous branching model permits sync operations
to be expressed in terms of basic VCS constructs. This in turn implies that
eventual mismatches that rise during synchronization are resolved à la VCS,
i.e. highlighting diff -erence between distinct versions of the same artifact
(traditionally, using the diff option in VCSs). Therefore, we do not aim
at automatic sync. Our aim is much more humble: tap into VCS popular
mechanisms for SPL engineers to achieve sync in a way similar to what they
do for single products (Section 5). However, this results in a conceptual
gap between how sync paths are conceived, and how they are realized down
into branching and merging. To close this gap, we propose leveraging VCSs
with SPL sync operations.

3. GitLine, a browser extension for GitHub that accounts for the above-
mentioned sync operations (subsections 5.6.1.1, 5.6.2.1 and 5.6.3.1).
Through a single click, product engineers can now (1) generate product
repositories along a certain configuration, (2) update propagations of newer
core-asset versions, or (3), feedback propagation of product customizations.

The next Section illustrates the synchronization challenge.

154

https://tinyurl.com/ya777m2x

Chapter 5. Synchronizing core-assets and products

VODPlayer

ChooseMovie

ViewMovieDetails

Baseline 1 Baseline 2 Baseline 3

Product A

Product B

Legend
Core Asset Release

Alpha release Beta release GA release

Repository

Update Core Asset Feedback Product Asset

PlayMovie

PauseMovie

QuitPlayer

ChangeMoviesServer

Manual Change

AssistedChange

AutomaticReplay

StopMovie

Product C

Figure 5.2: The SPL synchronization challenge (adapted from [KC13])

155

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Core-asset
ID

Core-asset Name Core-asset Description

CA1 VODPlayer Provides the PL architecture and basic functionality to run the
player

CA2 ChooseMovie Allow users to view the list of available movie and select one
CA3 ViewMovie

Details
Allow users to see a movie details: director, title and actors

CA4 PlayMovie Allow users to start playing the movie the have selected
CA5 StopMovie Allow users to stop the movie they are currently watching
CA6 PauseMovie Allow users to pause the movie they are currently watching
CA7 Quit Allow users to quit from the player
CA8 ChangeMovies

Server
Allow users to change the server they are connected to

CA9 ManualChange A manual-like approach to change the server users are connected to
CA10 AssistedChange Load a list of servers to allow users to select the one to connect to

Table 5.1: VODPlayer-PL core-assets.
5.3 Product derivation: illustrating the challenge
We stick to the generic process for product derivation described in [DSB05].
Deelstra et al. distinguish between the initial and the iteration phase. In the initial
phase, a first configuration is created from the core-assets. In the iteration phase,
the initial configuration is modified in a number of subsequent iterations until the
product sufficiently implements the imposed requirements. Unlike Configurable
Product Lines (CPLs) where product derivation is limited to the configuration
expression, SPLs do not achieve such degree of reuse effectiveness, and require
core-assets to be customized during product derivation. This makes SPLs more
difficult to manage that CPLs since they might potentially involve a larger number
of artifacts (not just core-assets, but product specific artifacts as well), handled by
different teams, and following different life-cycles. This Section illustrates the
complexities of product derivation through an example.

Consider VODPlayer-PL, a SPL for video playing software. VODPlayer-PL
includes ten core-assets at its initial version (see Table 5.1), is implemented in
Java using Feature-Oriented programming [ABKS13a, BSR03], for FeatureHouse
composer [AKL13]. Products are derived from those core-assets in accordance
with a feature diagram (not included here). Both core-assets and products are
not standing still but evolve. And this introduces the challenge: synchronize
the pace at which core-assets and products are released, considering that those
artifacts might well be governed by different teams with distinct priorities. Figure
5.2 depicts this matter. core-assets are arranged down the left-hand side(e.g.
VODPlayer, ChooseMovie). Each asset undergoes evolutionary change; its
evolutionary trajectory extends to the right. The bottom shows the products
in the SPL. Each product goes through various phases, such as alpha release,

156

Chapter 5. Synchronizing core-assets and products

beta release, and General Available (GA) release. Across the top are several
baselines. A baseline contains a set of assets, each at a given version, that work
together and are used to build products. Besides re-use of core-assets, Figure
5.2 also highlights possible sync paths (depicted as dotted lines): upgrades of
ChooseMovie are percolated to ProductA whereas a customization conducted for
ProductA is promoted as the core-asset AutomaticReplay. The question is how to
facilitate this process using existing VCSs. The appendix C provides the reader a
brief on VCS and git basic operations and popular branching models.

5.4 Proposals on VCSs for SPL development
VCSs are a cornerstone for distributed, collaborative development. SPLs
promote collaborative development through reuse. Traditionally, collaborative
development applies to different users working on the same piece of code.
By contrast, SPLs set two realms (i.e. domain engineering & application
engineering), where collaboration goes along the sync paths. The fact of being
two separated realms makes it even more important to track who made which
changes, and when they were made. Provenance of the contributions can turn key
when, like in the SPL case, development might be distributed among different
business units with their own budgets and responsibilities [Bos01].

VCSs are specifically designed to keep track of who did what. Broadly,
VCSs support “revisions”, i.e. a line of development (a.k.a baseline or trunk)
with branches off of this. Disparate efforts are reunited by merging branches.
In addition, repositories can be forked whereby a whole repository is cloned
in a separated space. Unlike a branch, a fork is independent from the original
repository. If the original repository is deleted, the fork remains. This space
can be merged back through a pull request2. The fork-&-pull model reduces the
amount of friction for new contributors. This makes this model popular among
open source projects because it allows people to work independently without
upfront coordination. Notice that VCSs do not dictate the file structure nor when
to branch or merge. This is part of the branching model. Approaches to branching
models very much depend on the dependencies to be preserved through the VCS.

Back to SPLs, approaches broadly distinguish two main ways to face SPL
development: clone&own (departing from existing products) and managed
(departing from reusable assets). Next paragraphs delve into VCS proposed

2https://help.github.com/articles/using-pull-requests/

157

https://help.github.com/articles/using-pull-requests/

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

solution for these two scenarios3.

Cone&own approach Here, a new product is obtained through clone&own
from existing products. Branching model wise, there are three alternative models:

branch-per-product-customer [Sta04]: a main branch holds the code shared by
all products. Product variants come as branches off the main branch, one
per customer, where customer-specific modifications are performed.

branch-per-product-functionality [ABKS13b]: there is one main branch per
functionality that products may exhibit. Product variants are obtained by
merging functionality branches.

repository-per-product approach, where there is a repository for each product
being developed. The difference with the aforementioned approaches is
that each product resides within a separate repository, instead of branches.
Within each product repository any branching model for single-systems can
be used to develop the product (refer to Appendix C). Thanks to distributed
VCSs, if desired, a fork&pull model can be leveraged to clone & propagate
changes between different product repositories [RKBC12].

As the authors themselves recognize, clone&own approach might be suitable as
there is no need for a complete upfront scoping process [Sta04]. However, it
also introduces overhead as it scales, since they encourage the development of
product variants and not reusable core-assets. Notice that in clone-based SPLs,
propagation takes place at the level of products in the absence of a “proper reuse”.
Therefore, activities such as propagating changes between product clones and
creating new products based on previous clones becomes difficult [DRB+13],
as well as, repetitive tasks are conducted (some tasks need to be performed
on each cloned copy). In this context, other works have addressed the issue
of aiding synchronizing of clone&own products. Rubin et al. [RKBC12] and
Antkiewicz et al. [AJB+14a] propose conceptual operations and discuss VCS
implications to manage the synchronization of clones. An industrial experience
on managing clone-based SPLs is later conducted by Rubin et al. [RCC13].
Authors conclude that an efficient management of clones relies on not only
improving the maintenance of existing clones, but also refactoring clones into

3The reader might notice that some of the below mentioned works were already introduced in
the background Section 2.5.3.3. In this case, we provide a discussion with a focus on VCSs and
underlaying branching models.

158

Chapter 5. Synchronizing core-assets and products

an SPL infrastructure. From a technical perspective, McVoy [McV15] introduces
new VCS operations suited for BitKeeper, which enables opportunistic reuse and
synchronization at component-level.

Managed approach Here, a distinction is made between core-assets (thought
for reuse) and products (thought for use). From the perspective of VCS repository
structure, three approaches have been reported:

single repository. Here, core-assets and products are kept in the same repository.
Traceability between core-assets and derived products is achieved through
branching [GP06]. On the downside, branches hold both core-assets and
products. Sharing the same space might be a problem if these different
kinds of artifacts are handled by different teams along distinct life-cycles.
Scalability might also be an issue. Here, Anastasopoulos [Ana13] presents
a tool on top of Subversion, which keeps SPL artifacts identified (where
in the VCS are core-assets and products located). Engineers can perform
activities related to evolution control including propagation of changes.
Update propagation is performed by AE over a single core-asset instance.
Feedback propagation is conducted by DE over a single core-asset. The
feedback gets first all the changes performed to that core-asset by all the
products, and merged them into the core-asset. This seems inconvenient
since it assumes that all the instances have changes that need to be promoted
to DE. We (latter) argue a more cherry-picking approach for feedbacking
changes. Anastasopulos does not discuss implications for underlaying
branching model. Calefato et al. [CNLL15] propose a branching model
for git (adapts git-flow [Gitb]), which is best suited for SPLs at a “platform”
reuse level (i.e. where reuse is only for assets common to all products).
For core-asset development there is only one branch: the release branch of
core-assets (master) which holds reusable components for products. For the
development of each product: (1) there is a product release branch, which
branches from the core-asset release branch, (2) an integration branch
which branches from the product’s release branch, and merges back to it
for releasing new product versions, and (3) feature branches for parallel
development of product specifics which branch from products’ integration
branch and merges back to it when finished. We found some limitations
with this branching model. First, a single branch for core-asset development
seems to fall short. At least an additional core-asset integration branch
should exist to aid in core-assets parallel development. Second, updates

159

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

from core-asset to products, come as a merge from core-asset release branch
into a product’s’ release branch. This seems risky since product specific
changes might conflict with a new core-asset update, which would yield
an unstable state of the product into the release branch. We argue that
these updates should first be integrated into products’ integration branch,
and then, if correct, merged to products’ release branch. Feedbacks from
products’ release branches to core-assets release branch follows a similar
risk. This branching model might also face some limitations upon a high
number of products being developed.

detached repositories. Here, core-assets and products are kept into independent
repositories. There is one core-asset repository that serves for core-
asset development and multiple product repositories that serve for product
development [SSRS16, HSB]. Hellebrand et al. [HSB] present two
branching models in git, by adapting git-flow [Gitb] (refer to the appendix
C Section C.3 for more details on git-flow). The core-asset repository
branching model extends git-flow with multiple release branches for
core-assets releases (e.g. releases for versions 1.x, 2.x) to support the
maintenance of old released product versions. The product repository
branching model extends git-flow with branches though for synching
with the core-asset repository, i.e. a generation branch. A product is
derived from a core-asset repository release branch (e.g. baseline 1.0) by
generation. This implies that the product repository, no longer holds the
core-asset instances, but it holds the post-compiled (transformed) source
files. Therefore, only the resulting generated product is committed to
product repositories’ generation branch. As the repositories are detached,
another tool rather than the VCS, needs to store the relationship between
the pairs core-asset&product repositories. This is managed by the variant
management tool, which is in charge on creating product repositories
whenever a new product is created from the variant management tool, as
well as, enacting the update propagations[SSRS16]. Authors approach
does not support feedback propagation. Since, product repositories hold
only the generated product, and hence, the product-specific changes modify
the generated product (not the core-asset instances), a VCS merge from
any product repository branch to the core-assets makes no sense, since
the core-assets have variation points and products have already resolved
them. This, could have been solved if product repositories hold the core-
assets instances, instead of the generated products. In this sense, product

160

Chapter 5. Synchronizing core-assets and products

engineers could make changes to the core-assets instead to the product
itself and feedback them to the core-asset repository. Product generation
(transformation or composition) can be made after the product-specific
changes were done. This is the approach we follow.

linked core-asset and product repositories. Here, core-assets and products are
kept in different repositories, although they are tied-up through a derivation
trace so that subsequent syncs can be conducted by means of branching
and merging operations[TMN08]. Unlike Anastasopoulos, Thao et al.
[TMN08] do not consider reusing existing VCSs. Instead, they build a
home-made one, which is capable of establishing dependencies between
products and core-assets. They support built in product derivation, where
the product engineers select the set of features they want to reuse, and a
new product repository is created. Unlike Hellebrand and Schulze et al.,
the product repository does not hold the composed product, but just the
components belonging to the features that product engineers have selected.
Whenever a product is derived, a new branch is automatically created in the
core-asset repository. This branch references the product repository main
branch, and serves for change propagation (for both parties). If DE changes
something on it, this is an update propagation. Hence, update propagation
looks like permitting DE to override assets in Product repositories, which
seems risky. Scalability might be an issue as well.

Our work follows Anastasopoulos in so far as taping into existing VCS tools (in
our case, git and GitHub). Like Thao et al., we also advocate for two types
of repositories that are linked: CoreAsset repositories and Product repositories.
Unlike Hellebrand et al. we advocate for a product repository that maintains the
trace back to the CoreAsset repository it was derived from. Product repositories,
will instantiate the core-asset release they were derived from, then, filter those
not necessary for constructing the product, and only after making the pertinent
product-specific changes, the product can be generated/built (preprocessed or
composed). This approach would enable both update and feedback operations.

Figure 5.2 depicts our sample SPL arranged along this repository architecture.
Each repository is a separated installation, hence, managed by its own team.
However, the SPL’s repositories are not isolated but conform an ecosystem
tightened together through sync paths (depicted through dotted lines in Figure
5.2). Unfortunately, inter-repository operations are so far limited to fork & pull
model: a fork clones a whole repository into a brand new one, which evolves
independently until it might be merged back through a pull. This fits well for open

161

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

source software projects but fall shorts for SPLs. Here, reuse is not based on whole
cloning but derivation: cherry-picking core-asset and next, customization. On this
premise, we introduce the derive & update & feedback model which rests in the
namesake operations. Unlike fork, derivation does not involve a whole clone but
a cherry-picking selection of core-assets. In the same vein, and in contrast with
GitHub’s pull, update & feedback govern a piecemeal synchronization between
Product repositories and its source CoreAsset repository. Next section delves into
the branching models that we propose.

5.5 Proposed branching models
VCSs support “revisions”, i.e. a line of development (the baseline or trunk) with
branches off of this, forming a directed tree, visualized as one or more parallel
lines of development (the "mainlines" of the branches) branching off a baseline
(see Figure 5.3). The question is how to mimic the modus operandi of SPL
development in terms of “parallel lines of development”, i.e. setting the branching
model. Since core-assets and products are not born equal (i.e. products are derived
from core-assets while core-assets might be obtained from scratch or extractively
from existing products), we believe they can be better served by distinct branching
models.

5.5.1 A Branching Model For Core-assets
For single-product development, a popular approach is branch-per-purpose
[WS02a]. This strategy recommends different branch types per task type. A
popular git branching model, git-flow, includes the following branching types
[Gitb]: master, develop, digression and release. The usage of git-flow in industrial
companies has been reported in [KDB+15a] . For understanding sake, we stick to
this terminology (see Figure 5.3 left):

• Master branch is a long-lived branch aimed at core-assets release
management. Each commit under master, holds a stable release of core-
assets that work together (e.g. Baseline 1.0 holds core-assets CA1 to CA10).
This branch, becomes essential for application engineers, and it is the
cornerstone for product derivation4.

4That the core-asset code is fully stable might be less an issue if development speed counts.
Releasing not-fully tested features might make sense in these scenarios which we have not

162

Chapter 5. Synchronizing core-assets and products

Figure 5.3: A closer look into the scenario described in Figure 5.2: branching
impact due to (1) Product Fork, (2) Update Propagation and (3) Feedback
Propagation. CA stands for the core-assets of the sample SPL.

163

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

• Develop branch is a long-lived branch which serves as the mainline of
development for core-assets.

• Digression branches are short-lived branches that serve to assist on parallel
development of core-assets, to create new core-assets or adapt existing ones
(e.g., updateCA2 branch enhances CA2 core-asset).

• Release branches are short-lived branches used to prepare the next release
for the core-asset baseline, before merging it to master (e.g., release2.0
branch).

This approach accounts for a parallel and consistent development of core-assets
under a single join development (by means of Develop and Digression branches).
In addition, products can rely on a consistent release of core-assets (baseline
release in Master branch). This model embraces a release strategy whereby
all core-assets are made available all together on regular intervals. This may
introduce a latency for application engineers. That is, even if a core-asset
implementation is ready for production, it cannot be released until other core-
assets are also ready to be in the next baseline release. This latency might lead
product engineers to “clone and own” the best-fitting asset and adapt it to their
needs [Mcg03]. Finding the right release pace is up to each SPL organization.

5.5.2 A Branching Model For Product Repositories
Unlike core-assets, products are derived from other artifacts, i.e. the core-assets.
This states a dependency between products and core-assets. Better said, between a
product and the core-assets used for its derivation. Notice, this dependency is not
with all core-assets but just with those assets that participate in the initial product
configuration. This dependency might involve for product engineers, first, to be
aware of upgrades for the core-assets at hand (update propagation), and second,
being able to communicate product customization which might be amenable to be
turned into SPL’s core-asset (feedback propagation). This subsection introduces
a branching model conceived for facilitating these propagations. By “facilitating”
we mean to be able to express those propagations in terms of the basic VCS
constructs (i.e. branch, merge, fork, pull). The final aim is to spot mismatches
risen during synchronization à la VCS, i.e. highlighting diff -erence between

considered here.

164

Chapter 5. Synchronizing core-assets and products

distinct versions of the same artifact. In this way, SPL engineers handle sync
in a very similar way to what they are used to for single products.

Our branching model for Product repositories rests on seven branch types
to account for three purposes: development, delivery and propagation. For
illustration purposes, we resort to our running example (see Figure 5.3 right).

For development. BigBang, Develop & Custom branches. BigBang is a long-
lived branch, which keeps localized the baseline from which the product was
derived. For instance, if a product wants to be derived from the CoreAsset
Baseline 1.0 , a BigBang branch would point to a commit exactly the same as
baseline 1.0 (same commit object, although in different repositories). This branch
remains untouched, during the repository life time. This is so, to enable feedback
propagation process (see later). On the other hand, Develop and Custom branches
embrace parallel development for product assets. Develop branch is a long-lived
branch which holds the mainline of product asset development. Custom branches,
obtained off Develop branches, are used for product specifics: core-assets can
be adapted while brand new assets can be introduced. When a customization
is considered finished, Custom branches are merged back into Develop branch .
Although good practices would advocate to delete Custom branches after merging
them back to the mainline, our model maintains these branches alive for feedback
purposes. Figure 5.3 (bottom) shows the case where a Product repository is
derived from Baseline1.0, instantiating core-assets CA1 to CA7. Additionally,
CA1 is customized to CA1’, hence giving rise to a Custom branch.

For delivery. Release & Master branches. Upon a consistent set of product
assets under a Develop branch, Release branches are created for obtaining an
executable product with the help of assembly tools. When this product is ready
for GA Release, it would be merged to the Master branch and tagged accordingly.
Master is a long-lived branch containing product releases ready to be delivered
to customers. Figure 5.3, shows the case where productA alpha release consists
of the initially derived core-assets plus CA1’ customization. The beta release
includes an additional enhancement on CA2’. Finally, the GA Release also
comprises a customization for CA4’.

For propagation. Update & FeedBack branches. Parallel development involves
resolving eventual conflicts when acting upon the same artifact. VCSs offer diff
tools that highlight differences in code lines to easily spot mismatches. For these

165

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

tools to be effective, the artifacts to be compared should correspond to versions
of the same artifact. However, when an artifact is composed with other artifacts,
the result can no longer be qualified as “a version” of the composing artifacts.
Hence, applying diff between a core-asset and a product would be of limited use
since the code of the core-asset might be tangled and polluted with code that is
not related with the core-asset as such. This calls for Product repositories to keep
an independent line of branching with untouched core-assets. This is the goal of
Update branches: holding the product’s core-assets separated from the product
mainline (i.e. develop branch). Upon a new baseline release in the CoreAsset
repository, product engineers might request an update propagation and easily spot
differences using diff (see later).

Back to our example in Figure 5.3, domain engineers have been busy yielding
Baseline 2.0 where CA2 is leveraged to automatically play a movie when the user
selects it from a movie list (CA8 and CA9 have also been adapted). At time t3,
application engineers conduct an UpdatePropagation upon Baseline 2.0. Should
this upper version be integrated? The decision is twofold. First, product engineers
diff -erentiate what’s new w.r.t. to previous version (i.e. diff(CA2, CA2’)). If
satisfied, next they assess the impact of the new version of CA2 with respect to
the product as such. This implies a merge with a Develop branch (see Figure
5.3). This accounts for a diff -driven stepwise decision that might help spotting
potential mismatches between how CA2 evolve (in the domain realm) and how
CA2 was customized (in the product realm).

Finally, Feedback branches support promotion of meaningful product
customizations into core-assets. By meaningful is meant a customization that
makes sense as a unit. This might imply collecting code scattered throughout
several Custom branches. The feedback process is twofold (see Figure 5.3).
First, a FeedBack branch is created to diff -erentiate the customization code from
the code in the original core-assets. To isolate the customization code (i.e.
avoiding mixing it up with other functionality), we cherry-pick those changes
from the Custom branch at hand 5. Back to the example, CA4 was customized
to automatically re-play a movie after finished. At time t4, application engineers
conduct feedback propagation. First, they need to pinpoint the Custom branches
at hand (e.g., customCA4 branch). Next, changes of customCA4, are cherry-
picked and merged into a FeedBack branch. Hence, feedbackCA4 branch only

5VCS’s cherry-pick operation takes the changes introduced in a commit, and tries to reapply
it on the current branch. This is useful when there is a number of commits on a branch, and only
one of them is to be integrated into another branch.

166

Chapter 5. Synchronizing core-assets and products

contains those changes for customCA4 (i.e., CA4’). When domain engineers
handle this feedback request, a diff(develop:coreAssets, feedback:feedbackCA4)
will highlight only changes for the new functionality (i.e., CA4). Domain
engineers can now decide to stick with CA4 or rather, open a new core-asset (i.e.,
CA11) where to generalize the product customization to the whole SPL.

5.6 SPL sync operations as first-
class constructs in VCSs

Previous section introduces branching models for ProductFork,
UpdatePropagation and FeedbackPropagation to be expressed in terms of
VCS primitive operations (i.e. fork, branch, merge). For instance, a productFork
involves both a fork and a branch: a fork upon the CoreAsset repository which
creates a BigBang branch; next, BigBang is branched into a Develop branch
where only the required core artifacts are kept. Likewise, UpdatePropagation and
FeedbackPropagation can also be expressed in terms of these VCS primitives.
However, this introduces a gap between how operations are conceived, and how
operations are realized, with the consequent costs associated. Our aim is to
leverage existing VCSs with these operations as first-class constructs. To this
end, we need first to precisely indicate their operational semantics, and next,
to integrate them into a VCS tool. As a proof-of-concept, we outline a GitHub
implementation.

5.6.1 Product Fork
ProductFork takes a CoreRepository as input, and delivers a ProductRepository,
along a given configuration. Namely:

PRODUCTFORK (USERACCOUNT:USERACCOUNT,
REPOSITORY:COREREPO, STRING[]: CONFIGURATION)::
REPOSITORY:PRODUCTREPO

where USERACCOUNT stands for the application engineer’s GitHub user account;
COREREPO stands for the CoreAssetRepository from which a Product repository
will be derived; and CONFIGURATION holds a list of core-asset identifiers.
PRODUCTREPO stands for the newly initialized Product repository. Figure 5.4
describes the new Product repository. Algorithm 5.1 provides the details:

167

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Algorithm 5.1 Product Fork

1 ProductFork(UserAccount:userAccount,Repository:coreRepo,String
[]:configuration):Repository

2 Repository productRepo=Fork(userAccount,coreRepo)
3 productRepo.name=split(coreRepo.name,’-’)[0]+’-Product-’+

currentDate()
4 productRepo.description=’A product derived from ’+coreRepo.name
5 for each branch in productRepo.branches do
6 if (branch.name<>’master:baseline’)
7 DeleteBranchByName(userAccount,productRepo,branch.

name)
8 Branch master=GetBranchByName(userAccount,productRepo,’master.

baseline’)
9 Branch bigBang=new Branch(userAccount, productRepo, master,’

bigBang:kickOff’)
10 Branch develop= new Branch(userAccount,productRepo,bigBang,’

develop:productAssets’)
11 SetDefaultBranch(userAccount,productRepo, develop)
12 DeleteBranchByName(userAccount,productRepo,’master:baseline’)
13 Folder CRepBaseline=develop.commit.folders
14 for each coreAsset in CRepBaseline do
15 if (coreAsset.name not in configuration)
16 DeleteFolder(userAccount,productRepo,develop,coreAsset)
17 Branch update=new Branch(userAccount,productRepo, develop,’

update:updates’)
18 File productConfig=new File(userAccount, productRepo,’product.

config’,bigBang.commit.sha)
19 Commit(userAccount,productRepo,update,productConfig,’Create

config file’)

Figure 5.4: Product Fork involves 3 branches & 3 commits.

168

Chapter 5. Synchronizing core-assets and products

1. Perform a FORK operation over COREREPO (line 2). Now, USERACCOUNT
owns a copy of COREREPO repository. At this point, PRODUCTREPO and
COREREPO are identical (same branches, commits, tags, repository details,
etc), except for PRODUCTREPO holds a fork link to COREREPO.

2. Rename PRODUCTREPO with pattern <SPL_name> <product><date>,
and change its description to state that PRODUCTREPO is actually a product
derived from a core repository (lines 3-4).

3. Adapt PRODUCTREPO to the product branching model introduced in section
5.5.2 (lines 5-19), namely:

(a) First, all branches that PRODUCTREPO holds, are deleted (lines 5-
7), except for master : baseline branch, which in ProductRepository
turns into bigBang: kickOff. As there is no way to rename
a branch in git, the way to simulate this operation is to, first
create a new branch for bigBang:kickOff (lines 8-9), and then
delete master:baseline (line12). BigBang:kickOff keeps now
all core-assets from COREREPO baseline (i.e, CREPBASELINE).
DELETEBRANCHBYNAME operation performs an HTTP request to
delete branches of GitHub repositories.

(b) Second, develop:productAssets branch is created off bigBang:kickOff
(line 10). GETBRANCHBYNAME operation is accessed the GitHub
API to obtain a branch by its name from a given repository.
SETDEFAULTBRANCH operation performs a HTTP request to set as
default branch of a GitHub repository.

(c) Third, those core-assets not referred in CONFIGURATION are deleted
(lines 13-16). DELETEFOLDER operation performs HTTP requests
to delete all files from a given folder. At this point develop:
productAssets branch only holds the core-assets needed to exhibit by
the product (Figure 5.4, PRODUCTASSETS).

(d) Finally, update:updates branch is created off develop:productAssets
(line 17), and initialized with the Product.config file. This file
holds the sha6 identifier of the COREREPO’S baseline version from
which PRODUCTREPO is derived (line 18-19). At this point,

6“sha” is GitHub name for unique hash identifier for an artifact, let this be a folder, a file or a
commit object.

169

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

A

E

D

C

B

Figure 5.5: Leveraging GitHub with ProductFork
update:updates holds original reusable core-assets versions (Figure
5.4, ORIGINALCORESV1).

5.6.1.1 Leveraging GitHub with ProductFork

Product derivation is performed upon CoreAsset repositories. Figure 5.5
depicts VODPlayer-CoreAssets repository, which is available at the following

170

Chapter 5. Synchronizing core-assets and products

link https://github.com/letimome/VODPlayer-CoreAssets
. However, this will only recover a plain GitHub HTML page. Enhancing
GitHub pages with SPL-specific VCS operations is achieved through the GitLine

browser extension. GitLine makes on-the-fly changes to GitHub pages to
account for ProductFork, UpdatePropagation and FeedBackPropagation. Using
Web Augmentation techniques [DA15], GitLine adds buttons to enact those
operations, i.e. repositories are accessed through GitHub’s APIs, and extra
iFrames are popped-up, should additional interactions with the user be needed.
GitLine has been proven for Firefox 37.0, and its available for download at
http://onekin.github.io/GitLine/. Note that GitLine needs to be
locally installed in each browser from where the SPL repository is to be accessed.
This subsection focuses on ProductFork. Drop-like icons are used to highlight
certain facts. Double-lined drops denote GitLine layered content.

Figure 5.5 depicts VODPlayer-PL CoreAsset repository . Drop A points to the
owner and repository name: letimome and VODPlayer-CoreAssets, respectively.
Drop B points to the current branch. Drop C points to the core-assets. On top
of this rendering, GitLine layers additional content: a new button (drop D). On
clicking, a panel shows up which delivers an IFrame which holds the result of
invoking a web-accessible feature configurator: S.P.L.O.T [S.P] (drop E). The
panel is automatically generated from the VODPlayer feature model which, in
the current implementation, needs to be previously loaded at S.P.L.O.T. Users
are now guided by S.P.L.O.T in setting the configuration (in the screenshot core-
assets CA1 to CA7 are selected). Once the configuration is over, the ProductFork
algorithm resorts to GitHub’s APIs to automatically create a GitHub repository.
Its name follows the pattern: <SPL_name><product><date> (e.g. VODPlayer-
Product-05ABR2015). This repository is already initialized with a BigBang
branch, Update branch and a Develop branch (Figure 5.4). The latter holds the
selected core-assets. Now, application engineers are ready to start.

5.6.2 Update Propagation
UpdatePropagation takes a Product repository as input, and creates a new version
for the Update branch. Namely:

UPDATEPROPAGATION(USERACCOUNT: USERACCOUNT,
REPOSITORY: PRODUCTREPO, REPOSITORY: COREREPO) ::
PULLREQUEST

where USERACCOUNT stands for the application engineer’s GitHub user

171

https://github.com/letimome/VODPlayer-CoreAssets
http://onekin.github.io/GitLine/

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

account; PRODUCTREPO denotes the hosting ProductRepository; and COREREPO
corresponds to the CoreAsset repository from which PRODUCTREPO was derived.
The precondition to trigger the operation is: there is a new baseline version in
COREREPO whose changes have not been yet propagated to PRODUCTREPO. This
is assessed by reading PRODUCTREPO’S product.config file under update:updates
branch, which holds the sha identifier to the COREREPO baseline to which
PRODUCTREPO is currently synchronized. If the sha at product.config differs
from the one at COREREPO’S master:baseline, it means that PRODUCTREPO is
unsynchronized with COREREPO, and thus, update propagation can be enacted.
Figure 5.6 describes Product repository branching structure before and after the
operation. Algorithm 5.2 describes the operational semantics:

1. Get the latest baseline version available from COREREPO, and bring to
PRODUCTREPO’S update branch the newest versions of those core-assets
that PRODUCTREPO is reusing (lines 2-10).

(a) Specifically, for all those core-assets versions PRODUCTREPO is
currently reusing (i.e, ORIGINALCORES -V1), check if there is a newer
reusable core-asset version at COREREPO (lines 6-8).

(b) If there is a newer version, get it and commit the new version of
the asset (i.e., ORIGINALCORES-V2) to update:updates branch (line
9). As GitHub web site only allows to commit a single file at a
time, we developed COMMITFOLDER HTTP operation which given
a folder, all files contained inside are committed iteratively. At this
point, PRODUCTREPO holds new versions of reusable core-assets
under update:updates branch (i.e., ORIGINALCORESV2).

2. Update product.config file to indicate that PRODUCTREPO is now in sync
with PRODUCTREPO (lines 11-13). First the file is obtained by means of
GETFILEBYNAME operation, which is a HTTP request to get a file from
a GitHub repository (line 11). Afterwards, file content is updated with the
sha identifier of COREREPO last baseline version (line 12), and committed
to update:updates branch (line 13).

3. Finally, a pull request is enacted to notify application engineers about the
new changes pulled from the CoreAsset repository (lines 14-15). The
pull request requests to merge update: updates branch into develop:
productAssets branch. At this point application engineers can reason about

172

Chapter 5. Synchronizing core-assets and products

Algorithm 5.2 Update propagation algorithm.

1 UpdatePropagation(UserAccount:userAccount,Repository:
productRepo,Repository:coreRepo):PullRequest

2 Branch update=GetBranchByName(userAccount,productRepo,’update:
updates’)

3 Branch coreBaseline=GetBranchByName(userAccount,coreRepo,’master
:baseline’)

4 Folder originalCoresV1=update.commit.folders
5 Folder originalCoresV2= null
6 for each coreAsset in originalCoresV1 do{
7 originalCoresV2= GetFolderByName(userAccount,coreRepo,

coreBaseline,coreAsset.name)
8 if (coreAsset.sha<>originalCoresV2.sha)
9 CommitFolder(userAccount,productRepo,update,originalCoresV2,

’new update for core asset:’+originalCoresV2.name)
10 }
11 File productConfig=GetFileByName(userAccount,productRepo,update,

"product.config")
12 productConfig.content=coreBaseline.commit.sha
13 Commit(userAccount,productRepo,update,productConfig,’product

synched to baseline’+coreBaseline.commit.sha)
14 Branch develop=GetBranchByName(userAccount,productRepo,’develop:

productAssets’)
15 CreatePullRequest(userAccount,productRepo,productRepo,develop,

update,update.commit.comment)

Figure 5.6: Update Propagation involves 1 commit for each core-asset updated
core-asset & 1 pull_request

the impact of this updates have into the product assets by popping up the
diff panel (see later).

173

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

5.6.2.1 Leveraging GitHub with UpdatePropagation

Update propagation is performed by application engineers upon a Product
repository. Figure 5.7 depicts VODPlayer-Product-05ABR2015, i.e. the
Product repository obtained in the previous sub-section, available at https:
//github.com/lemome88/VODPlayer-Product-05ABR2015. Let’s
assume that core-assets evolve until Baseline 2.0 (time frame t1-t3) where a new
version of CA2 (i.e. ChooseMovie) is available. During the same timeframe,
product engineers customized CA1 into CA1’. At this time, application engineers
perform updatePropagation. Figure 5.7 (top) depicts this scenario. Drop B points
to the current branch. Drop A points to the Update_Propagation button. On
clicking, a pop-up displays the summary of changes to be pulled (drop C): a
list of rows with the name of the updated core-asset (e.g. ChooseMovie), and
a link to the Core-Asset-repository’s commits describing those changes (“New
commits”). Following these links brings product engineers to the Core Asset
realm by opening a new browser tab, where the ChooseMovie asset evolution is
shown in a diff panel (not shown in the Figure), so that product engineers can make
an informed decision about whether to pull these changes back to the Product
repository. If so decided, developers go back to the Product repository (Figure
5.7 (bottom), and click the Yes button (drop D). The ChooseMovie newer version
is pushed to the Update branch (e.g. update:updates). Application engineers
are notified through a new pull request (drop E) to merge update:updates into
develop:productAssets. Developers can now open the pull request to retrieve the
changes (drop F). A new page shows up with the diff -erences: diff (develop:
productAssets, update:updates). If changes are accepted, application engineers
merge the branches. Otherwise, the pull request is closed, and the Product
repository sticks with the old asset versions.

5.6.3 Feedback Propagation
FeedBackPropagation takes a Product repository as input, and creates a new
version for the FeedBack branch. Namely:

FEEDBACKPROPAGATION(USERACCOUNT: USERACCOUNT,
REPOSITORY: COREREPO, REPOSITORY: PRODUCTREPO,
BRANCH: KICKOFF, BRANCH[]: CUSTOMIZATIONS, STRING:
FEEDBACKBRANCHNAME):: PULLREQUEST

where USERACCOUNT stands for the application engineer’s GitHub user account;

174

https://github.com/lemome88/VODPlayer-Product-05ABR2015
https://github.com/lemome88/VODPlayer-Product-05ABR2015

Chapter 5. Synchronizing core-assets and products

E

A

C

D

F

B

Figure 5.7: Leveraging GitHub with UpdatePropagation: enacting (top) and
outcome (bottom).

175

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

COREREPO stands for the CoreAsset repository; CUSTOMIZATIONS correspond
to the set of branches that keep the product specific changes that want to be
propagated back to the CoreAsset repository; finally, FEEDBACKBRANCHNAME
refers to the name for the feedback branch to be created. Figure 5.8 describes
Product repository branching structure before and after the operation. Algorithm
5.3 provides the details:

1. Create a FeedBack branch , labeled FEEDBACKBRANCHNAME (i.e.,
NEWFEEDBACK), off bigBang:kickOff (lines 2-3).

2. Build the meaningful customization based on existing CUSTOMIZATIONS
branches (lines 4-8). This requires, for each custom branch in
CUSTOMIZATIONS (Figure 5.8, C1 AND C3), to cherry-pick the changes
that each of the custom branch introduces (i.e., R1,R2 for C1) and to commit
them into NEWFEEDBACK branch (i.e., R5). As GitHub does not provide
cherry picking operation, we needed to develop it for GitHub repositories.

(a) This, requires first to identify the assets that a given branch (e.g,
custom branch) has changed. GETCHANGESFROMBRANCH is a
HTTP operation which returns all the artifacts that a given branch has
changed, arranged in a tree structure.

(b) Then, all the identified assets are committed into NEWFEEDBACK
branch.

3. When all CUSTOMIZATIONS have been merged into NEW FEEDBACK
branch, a pull request is created in COREREPO, requesting to merge
PRODUCTREPO’S NEWFEEDBACK branch into COREREPO develop branch
(lines 9-10).

176

Chapter 5. Synchronizing core-assets and products

Algorithm 5.3 Feedback propagation algorithm.

1 FeedbackPropagation(UserAccount:userAccount,Repository:coreRepo,
Repository:productRepo,Branch[]: customizations,String:
feedbackBranchName)

2 Branch bigBang=GetBranchByName(userAccount,productRepo,"bigBang:
kickOff")

3 Branch newFeedback=new Branch(userAccount,productRepo,bigBang,
feedbackBranchName)

4 for each custom in customizations do {
5 Folder customizedAssets=GetChangesFromBranch(userAccount,

productRepo,custom)
6 for each custAsset in customizedAssets do
7 CommitFolder(userAccount,productRepo,newFeedback,custAsset,’

customized asset:’+custAsset.name)
8 }
9 Branch develop=GetBranchByName(userAccount,coreRepo,’develop:

coreAssets’)
10 CreatePullRequest(userAccount,coreRepo,productRepo,develop,

newFeedback,newFeedback.commit.comment)

Figure 5.8: Feedback Propagation involves 1 branch & 1 commit for each Custom
branch involved & 1 pull_request

177

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

C

D

A

B

E

F

Figure 5.9: Leveraging GitHub with FeedBackPropagation: enacting (top) and
outcome (bottom).

178

Chapter 5. Synchronizing core-assets and products

5.6.3.1 Leveraging GitHub with FeedBackPropagation

FeedBack propagation is performed over a Product repository. Figure 5.9 (left)
depicts VODPlayer-Product-05ABR2015 repository at time t3: a custom branch
(i.e., customCA4) was created for CA4 (i.e. PlayMovie). Meanwhile, VODPlayer-
CoreAsset repository also committed some changes. At this point, application
engineers want to promote changes done in customCA4 (i.e. new version for
CA4). Figure 5.9 (top) depicts this scenario. Drop B points to the current
branch. Drop A points to the new FeedBack_Propagation button. On clicking,
a pop-up lists all Custom branches that the Product repository holds (drop C).
Users can now select the desired customization (e.g. customCA4 branch), and
press the Yes button (drop D). This triggers the feedback propagation algorithm.
Behind the scenes, a new FeedBack branch is created (i.e, feedbackCA4), and the
CoreAsset repository receives a pull request coming from the Product repository
(drop E in Figure 5.9 (bottom)). When this request is opened, domain engineers
are invited to merge the newly created VODPlayer-Product’s FeedBack branch
(i.e., feedback:customCA4) into VODPlayer-CoreAssets’ Develop branch (i.e.,
develop: coreAssets). Drop F points to the diff view of the changes proposed
by this pull request. At this point, domain engineers should decide whether the
customization is useful to the whole product line. If so, domain engineers would
need to refactor the customized core-assets. This might require to create a new
Digression branch (e.g. newCA11 branch in Figure 5.3).

5.7 Conclusion
This Chapter considers a SPL scenario where core-assets and products evolve
along different life-cycles but get synchronized through propagation events.
However, synchronization is achieved not between artifacts but artifact versions.
This requires propagations to act upon the right version of artifacts. Specially,
3-way merges are required in order to not override changes done by the other
party. We introduced a branching model that permits to capture sync paths in
terms of VCS standard operations. Next, so-described processes are delivered as
first-class constructs on top of an existing VCS, i.e. Git/GitHub. This permits
reducing “the accidental complexity” that goes with supporting sync paths while
freeing up developers for focusing on “the essential complexity”, i.e. attuning and
refactoring code coming from different developers. Tested for a FOP composer,
the approach is valid as long as dedicated core-assets for dedicated functionalities

179

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

are involved. Usability wise, the enhanced GitHub (i.e. the one augmented with
GitLine) certainly outperforms the raw GitHub, if only as for reducing the number
of clicks. GitLine is being used for two SPLs. Our hope is that by delivering
GitLine to the community, sync-path good practices emerge. This work is an
attempt to make these practices explicit and available. Future work includes
to extend GitLine with composition options, facing scalability issues (i.e. SPL
with large number of features and products), and evaluating GitLine’s branching
models and sync operations in industry. This would require to find a company
where development efforts are carried out in both DE and AE. Our intuition is
that SPLs at different levels of reuse might very well require different branching
models. In a similar vein, different sizes of SPLs, as well as, differences in
the business organization demand differences on the repository structures. For
instance, for a big SPL it might be convenient to have a repository per reusable
component. Nevertheless, in such a case, branching models are also necessary.
But which one?. To the best of our knowledge no discussion is given on this
issue. We aim at investigating this concern further.

180

Chapter 6

Conclusions

6.1 Overview
Following the so called grow-and-prune model [FV03] SPLs can be incrementally
evolved by letting products grow and later prune product functionalities deemed
useful by refactoring and merging. In this context, this Thesis investigates how
current VCSs can be leveraged to support these practices. Specifically, we focus
on the “prune” stage where Domain Engineers need to recap and merge what
Application Engineers have been doing during the “grow” state. This includes
capabilities for customization analysis, code peering and change propagation. The
rest of the chapter reviews the main results of the Thesis, lists its limitations, as
well as, new areas for future research are suggested.

6.2 Results
The contribution of this Thesis has been presented in the four central chapters of
this manuscript. Next, we provide a summary for each:

• Chapter 2 revisits the concept of “evolution” in SPLs. This chapter
systematically maps the existing research on SPL evolution, along four main
facets. Well-covered areas, as well as, areas that require further research
are identified. Analyses of the results indicate that "Solution proposals"
are the most common type of contribution (31 %). However, few studies
do address solutions for co-evolving core-assets and products. This fact,
together with the evidences coming from the industry that attest the need for

181

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

co-evolving core-assets and products (specially during the first years of the
SPL life-cycle), grounds the importance of tackling co-evolution issues in
SPLs. Specifically, few efforts have been made in order to identify product
customization, as well as, to synchronize core-assets and products. This
Thesis faces these gaps.

• Chapter 3 tackles customization analysis. We propose a data-warehouse
approach to track product customization efforts. More concretely, we
conduct a survey among Danfoss drives engineers in order to identify the
information needs required for conducting customization analysis. Next, we
resort to Dimensional Modeling to tackle these information needs using the
modified LOCs as facts. Finally, we propose the use of Alluvial diagrams as
a visualization mean. This approach is fleshed out in CustomDIFF, a data-
warehouse tool that uses Git as the operational system, and pure::variants
as the SPL framework. Primary evaluations reveal promising results on
CustomDIFF’s usefulness for customization analysis.

• Chapter 4 tackles the merge problem that arises during the pruning
(i.e. merging and refactoring) of product customizations. We propose
a new practice, i.e. code peering practice, as a way to lessen the
issue by promoting early reuse across product teams right at product
development. We discuss four design principles that drive how code
peering can be introduced for SPL development. As a proof-of-
concept we developed PeeringHub, a tool tool that supports code peering
through: (1) enhancing Github with a peering bar, (2) exercising a DW
solution similar to CustomDIFF’s, and (3) leveraging feature-based 3-way
comparison&merging. Primary evaluations reveal promising results with
respect to usability and ease of use.

• Chapter 5 addresses update and feedback propagations. Branching models
for SPL development are proposed, that permit to capture the sync paths
in terms of Version Control System (VCS) standard operations. On
these grounds, sync operations are delivered as first-class constructs.
The approach is fleshed out for GitHub. This permits reducing “the
accidental complexity” that goes with supporting sync paths while freeing
up developers for focusing on “the essential complexity”, i.e. attuning
and refactoring code coming from different developers. Tested for a
FOP composer, the approach is valid as long as dedicated core assets for
dedicated functionalities are involved.

182

Chapter 6. Conclusions

6.3 Publications
Part of the work presented in this thesis has been already presented and discussed
in distinct peer-reviewed forums. The publications that endorse this Thesis are
listed below.

Selected publications

• Leticia Montalvillo, Oscar Díaz: Requirement-driven evolution in
software product lines: A systematic mapping study. Journal of
Systems and Software (JSS). Volume 122, pages 110-143 (2016). DOI
https://doi.org/10.1016/j.jss.2016.08.053. Related to Chapter 2.

• Leticia Montalvillo, Oscar Díaz, Maider Azanza: Visualizing product
customization efforts for spotting SPL reuse opportunities. In the
proceeding of the International Workshop on Reverse Variability
Engineering (REVE’17), full paper. Pages 73-80 (2017). DOI
https://doi.org/10.1145/3109729.3109737. Related to Chapter 3.

• Leticia Montalvillo, Oscar Díaz and Thomas Fogdal: Reducing
Coordination Overhead in SPLs: Peering in on Peers. In the proceedings
of the International Conference on Software Product Lines (SPLC’18), full
paper. Related to Chapter 4.

• Leticia Montalvillo, Oscar Díaz: Tuning GitHub for SPL development:
branching models & repository operations for product engineers. In
the proceeding of the International Conference on Software Product
Lines (SPLC’15), full paper. Pages 111-120 (2015). DOI
https://doi.org/10.1145/2791060.2791083. Related to Chapter 5.

6.4 Research visits
During the development of the Thesis I often found myself wondering about how
a company that develops software with an SPL approach does “this” or “that”.
Experience reports that industries publish might shed some light... sometimes, but

183

https://doi.org/10.1016/j.jss.2016.08.053
https://doi.org/10.1145/2791060.2791083

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

they frequently did not provide me with the answers I was looking for. Most of
the time I ended up with even more questions... Therefore, I really wanted to meet
real practitioners, from real companies, developing real SPLs. The chance turned
my prays into reality. During the Software Product Line Conference (SPLC) held
in Nashville in 2015 I met Thomas Fogdal, a functional manager (a.k.a. my golden
pass to a SPL-developing company) working for Danfoss Drives. We soon found
common interests and thanks to that I had the pleasure to perform a research visit
at Danfoss Drives for 4 months. I had the opportunity to help them during the first
steps of transitioning their SPL from their old ClearCase set-up, to a git-based
set-up. During this period of time I had the chance to learn how a real SPL looks
like, and how real SPL engineers work together to deliver software following an
SPL approach. This insights were priceless, and certainly gave my Thesis a ready
start. After my stay, I was able to come back again to Danfoss, in order to test out
one of our new ideas (i.e. CustomDIFF) in their setting.

6.5 Assessment and future research
The goal of a Thesis is to try to resolve a problem. Nevertheless, in its
development, some issues might remain open. We next assess the limitations of
each piece of work presented in this Thesis and, we expose some of the topics that
this Thesis leaves open. Discussion is articulated as per piece of work. Bullets list
the limitations/future research opportunities.

Mapping the existing literature on SPL evolution

• Performing in-deep Systematic Literature Reviews (SLRs). SLRs are a
form of more focused literature reviews, with a narrower scope and more
specific research questions compared to SMSs. Our SMS was broad, as
SMS are in nature. We provide an overview of the existing literature on
SPL evolution, and we classified it along four main evolution activities, i.e.
identify, analyze&plan, implement and verify change. Researchers can tap
into our SMSs to conduct more in-deep SLRs. Potentially, a SLR for each
evolution activity could be conducted.

Aiding SPL engineers conduct customization analysis

• Evaluating CustomDIFF in different SPL set-ups. The evaluation we have
carried out at Danfoss Drives permitted us to assess the usefulness of

184

Chapter 6. Conclusions

CustomDIFF’s with respect to analyzing product customization. However,
we would like to further evaluate CustomDIFF in different companies to
measure its effectiveness along two parameters: the SPL maturity (less
mature SPLs might face higher customization effort) and the SPL size (the
larger the number of core asset and products, the more compelling the need
for abstract visualizations).

• Performing an experiment to evaluate CustomDIFF’s usefulness to plan the
next SPL release. The evaluation we have carried out at Danfoss Drives
permitted us to assess the usefulness of CustomDIFF’s to analyze product
customization. However, we did not evaluate whether CustomDIFF help
engineers plan the next SPL release. We would like to deploy it and evaluate
its effectiveness to help engineers plan the next SPL release.

• Integrating CustomDIFF with other sources of information. We have so
far focused on two dimensions of customization analysis: “the what” (i.e.
what features & core assets are customized) and “the where” (i.e. products
that performed such customization). It would be of interest to study how
to supplement Git data with data coming from other sources, to collect
information about products, customers and developers, and to see what
other kind of analyses this additional sources would allow for. After all,
data-warehouses are thought for integrating heterogenous data sources.

• Integrating CustomDIFF into a DevOps framework. CustomDIFF is an
analysis tool and hence, it does not preclude the customization practice as
such, in the sense of determining how to proceed during the pruning phase.
An interesting development would be using CustomDIFF within a DevOps
framework where the customization effort (at its different abstraction levels)
is tracked, and reactions can be attached to a certain customization-effort
threshold being surpassed.

Fostering product engineers on peering into other peers

• Gathering industrial experiences about the implications of the merge
problem in SPLs. Although the literature does indicate that pruning product
customizations into the SPL core-asset base is complicated and time-
consuming, there is a lack of explicitly describing this phenomenon.

185

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

• Performing an experiment to evaluate PeeringHub’s effectiveness to
alleviate the merge problem during the pruning of product customization.
The evaluation we carried out permitted us to assess the usefulness of
PeeringHub to compare product customizations between them. However,
we did not evaluate it at an industrial setting, nor we did evaluate whether
code peering with PeeringHub lessens the merge problem.

Supporting the synchronization of core-assets and products

• Evaluating GitLine’s branching models and sync operations. We have
not yet evaluated the suitability of the proposed branching models and
operations for synching core-assets and product repositories. The proposed
branching models are suited for SPLs at a maturity level in which both
core-assets and products require development. We did not have the chance
to meet a company in such SPL maturity level willing to evaluate our
approach.

• Providing support for other variability realizations. The presented approach
was tested for a FOP composer (i.e. FeatureHouse). Nevertheless,
the approach is valid as long as dedicated core assets for dedicated
functionalities are involved, i.e. for composition-based approaches.
The reader might have noticed how in this Thesis different variability
implementation techniques were considered. Initially, we started this
Thesis with the present piece of work, i.e. supporting the synchronization
of core-assets and products (Chapter 4). Note, that the order in which
the Thesis’ chapters are arranged differ from the chronological order in
which they were worked. At the moment we tackled this piece of work,
evidences in the SPL literature showed how composition-based approaches
outperformed annotation-based ones (at least for evolution related tasks).
Hence, we opted to ground the work in a composition-based setting. Later
in time, we conducted a SMS on SPL evolution, and this was the inflection
point. The results of the mapping showed that most of the SPL-developing
companies are not using composition-based approaches, but annotation-
based ones. Additionally, only few pieces of work addressing composition-
based approaches were actually evaluated into an industrial context. That is
the reason why our next research efforts (presented in Chapter 3) focuses on
annotation-based approaches. With this paradigm switch we aimed to cause
a significant impact on both the SPL research and practice.

186

Chapter 6. Conclusions

• Comparing the suitability of different branching models for SPL
development. The reader might have noticed, how in Chapter 3 and Chapter
5 we considered different repository structures and branching models for
SPL development. While in Chapter 5 we advocated for a separated
repository approach where core-assets and products are developed in
separate repositories, in Chapter 3 we advocated for a single repository
approach where both core-assets and product are being developed in the
same repository but in different branches. This switch was due to the
fact that the piece of work in Chapter 3 was motivated by the Danfoss
experience. Since at Danfoss development in AE is minor (a two week
development period), and no clear separation between DE and AE exists,
a single repository approach suits well. However, this fact does not
invalidate the repository model proposed in Chapter 5, since this can suit
SPL companies with a clear separation between DE & AE, and which have
a higher volume of development in AE. In fact, our intuition is that SPLs at
different levels of reuse might very well require different branching models.
In a similar vein, our intuition is that differences on the SPL size, as well as,
differences in the team’s organizational model of an SPL, demand different
VCS repository structures. For instance, for a big SPL in which teams are
organized around the SPL high-level components, it might be convenient
to have a repository per reusable component. No matter the repository
structures, underlaying branching models that drive development are also
necessary. But which pair of branching model and repository structure best
fits the development of an SPLs? To the best of our knowledge no discussion
is given on this issue. We aim at investigating this concern further.

6.6 Conclusion
This Thesis took a Design Science Research approach to identifying and
solving problems that raise when incrementally evolving SPLs from product
developments. In order to evaluate the state of-the-art on the area of SPL
evolution, we systematically mapped the existing literature on the topic. This,
helped us to spot the fact that few efforts were made to address the co-evolution
of core-assets and products. This finding kicked-off this Thesis, and provided
three main issues to investigate: (1) how to help SPL engineers analyze product
customizations, (2) how to alleviate the merge problem that raises during the
pruning of product customization, and (3) how to help SPL engineers synchronize

187

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

core-assets and products. Following good practices for design science research,

• the importance of the problems were argued,

• root-cause analysis was conducted for these problems,

• three artefacts (i.e. CustomDIFF, PeeringHub, and GitLine) were
developed to lessen some of these causes (i.e. lack of dedicated
visualization tools for customization analysis, low abstraction level at which
customization analysis is conducted, large amount of conflicts between
product customizations, VCSs not tuned to SPL propagation operations,
and lack of guidelines for branching and merging).

• those artefacts were evaluated to the extent research prototypes can be
evaluated in an industrial SPL setting,

There is a considerable amount of future work. We invite both the product line
research and the industry to join our efforts and further improve the work started in
this Thesis, by refining the proposed approaches to support the grow-and-prune
model, studying their applicability to different SPL contexts and scenarios, and
providing missing solutions.

Although this chapter “physically” concludes this dissertation, the journey
continues.

188

Appendix A

Papers on SPL evolution classified
on facets

Below are listed all the papers that included in the Systematic Literature Review
detailed in Chapter 2. For each paper the table provides its reference (REF.
column); the year it was published (YEAR column); the evolution activity targeted
in the paper: identify, analyze and plan, implement, or verify (EV. ACT. column);
the evolution sub-activity targeted in the paper: e.g. monitoring products, change
impact, decision-making (EV. SUB. column); the asset type the paper considers to
evolve: products, variability model, code assets, SPL architecture (ASSET TYP.
column); the product derivation approach considered in the paper: model-driven,
composition-based, annotation-based, clone&own-based, or hybrid; and finally
the research type of the paper (RESEARCH TYP.): solution, evaluation, validation,
or conceptual.

Ref. Year Ev. Act. Ev. Sub. Asset typ. Pr. Dev Research
typ.

[KSS15] 2015 Analyze
and plan

Change
impact

Products Model-
driven

Solution

[HVLG12] 2012
Analyze
and plan

Change
impact

Variability
model, Composition Experience
SPL
architecture,
Code assets

189

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[Sch06a] 2006 Analyze
and plan

Decision-
making

Variability
model

NA Conceptual

[BM14] 2014 Implement
Change
synchronization

Variability
model

NA Validation

[MKR94] 1994 Analyze
and plan

Decision-
making

Products NA Solution

[KB13] 2013 Analyze
and plan

Decision-
making

Variability
model

NA Evaluation

[TABG15] 2015
Implement

Built-with-
change

Variability
model,

Hybrid Solution
SPL
architecture,

Verify
Inconsistency
checking Code assets

[GFFd14] 2014 Implement
Built-for-
change

Code assets Composition Evaluation

[Kla08] 2007 Identify
Monitoring
the
environment

NA NA Conceptual

[BTG12] 2012
Implement

Built-with-
change

Variability
model,

Hybrid Solution

Verify
Inconsistency
checking

Code assets

[DLS05] 2006 Implement
Built-for-
change

SPL
architecture

Model-
driven

Solution

[DPG14] 2014
Analyze
and plan

Change
impact

SPL
architecture

Composition Evaluation

Implement
Built-for-
change

[NRG08] 2008 Analyze
and plan

Planning NA NA Validation

[CdOW11] 2011 Implement
Change
synchronization

Code assets Model-
driven

Conceptual

190

Chapter A. Papers on SPL evolution classified on facets

[SS08] 2008
Analyze
and plan

Decision-
making

Code assets,
NA SolutionSPL

architecture,
Code asset

[TM14] 2014 Analyze
and plan

Decision-
making

Variability
model

NA Solution

[GCC+03] 2003 Implement
Built-with-
change

SPL
architecture

Composition Solution

[ddC+12] 2012 Verify
Inconsistency
checking

SPL
architecture,

Composition Evaluation

Code assets

[CDG+12] 2012
Implement Built-for-

change
Variability
model,

NA Evaluation

Code assets

[PYZ11] 2011 Analyze
and plan

Decision-
making

Variability
model

NA Conceptual

[IKH14] 2014 Analyze
and plan

Planning NA Composition Experience

[VGH+12] 2012 Verify
Inconsistency
checking

Variability
model,

Model-
driven

Evaluation

Code assets

[DKO+97] 1997 Implement
Built-for-
change

SPL
architecture

NA Experience

[GF13] 2013
Analyze
and plan

Decision-
making

Variability
model

NA Validation

Implement
Change
synchronization

[MV09] 2012 Implement
Built-with-
change

Code assets Composition Solution

191

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[tBMP12] 2012 Verify
Scalable
verification

SPL
architecture

Composition Solution

[DLHE14] 2014 Verify
Inconsistency
checking

Variability
model,

Composition Validation

Code assets

[RRSW] 2015 Verify
Scalable
verification

SPL
architecture

Composition Validation

[KR13] 2013
Analyze
and plan

Decision-
making

Variability
model,

NA Solution

Code assets

[Hol12] 2012 Implement
Change
synchronization

SPL
architecture

Composition Experience

[PDŠ12] 2012 Analyze
and plan

Change
impact

Variability
model

NA Solution

[SHA12] 2012
Implement Change

synchronization
Variability
model,

Model-
driven

Solution

Code assets

[PGT+13] 2013 Implement
Change
synchronization

Variability
model

Annotation Validation

[CL01] 2001 Implement
Built-for-
change

Code assets Hybrid Evaluation

[AKEs12] 2012 Implement
Built-for-
change

Code assets Composition Evaluation

[TDR+11] 2011 Implement
Built-for-
change

SPL
architecture

Composition Evaluation

[QPB+14] 2014 Verify
Inconsistency
checking

Variability
model

NA Validation

[GWTB12] 2012 Implement
Change
synchronization

Variability
model

NA Evaluation

[LLSG12] 2012 Verify
Scalable
verification

Products Compositon Solution

192

Chapter A. Papers on SPL evolution classified on facets

[SBB+10] 2010 Implement
Built-for-
change

Code assets Composition Evaluation

[TBM+12] 2012 Implement
Built-for-
change

SPL
architecture

NA Experience

[CCG+03] 2004 Implement
Change
synchronization

Products Composition Solution

[DKvDP15] 2015 Analyze
and plan

Change
impact

Variability
model

NA Validation

[VDJ10] 2010 Identify
Monitoring
customer

NA NA Evaluation

[TB07] 2007 Analyze
and plan

Decision-
making

NA NA Validation

[PHS11] 2011 Analyze
and plan

Change
impact

Variability
model

Model-
driven

Solution

[Tes07] 2007 Implement
Built-for-
change

Code assets Composition Experience

[FCS+08] 2008 Implement
Built-for-
change

Code assets Composition Evaluation

[RR03] 2003 Analyze
and plan

Decision-
making

SPL
architecture

NA Experience

[Sha99] 1999 Implement
Built-for-
change

Code assets Hybrid Experience

[HRG12] 2012
Implement Change

synchronization

Variability
model, Model-

driven
Evaluation

Code assets

[RBK14] 2014
Analyze
and plan

Change
impact Code assets Annotation Validation

Implement
built-with-
change

[SSTS14] 2014 Implement
Built-with-
change

Code assets Composition Evaluation

193

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[YM12] 2012 Analyze
and plan

Change
impact

Code assets Composition Validation

[JT11] 2011 Implement
Built-with-
change

Products Model-
driven

Solution

[AJB+14a] 2014 Implement
Change
synchronization

Products Clone Conceptual

[LRZJ04] 2009 Implement
Built-for-
change

Code assets Hybrid Solution

[Tab04] 2004 Analyze
and plan

Planning SPL
architecture

NA Experience

[TBC08] 2008 Analyze
and plan

Decision-
making

Variability
model

NA Evaluation

[Ana09] 2009
Implement Change

synchronization

Variability
model,

Composition ValidationCode assets,

Products

[Böc05] 2005 Identify
Monitoring
the
environment

NA NA Conceptual

[KB12] 2012 Analyze
and plan

Decision-
making

Variability
model

NA Evaluation

[SB00] 2000 Implement
Built-for-
change

SPL
architecture

Hybrid Experience

[Liv11] 2011 Analyze
and plan

Change
impact

Variability
model

Annotation Experience

[DRC13] 2013 Implement
Built-for-
change

Code assets Composition Evaluation

[JBAC15] 2015 Implement
Change
synchronization

Variability
model

Clone Validation

194

Chapter A. Papers on SPL evolution classified on facets

[APT12] 2012 Analyze
and plan

Decision-
making

Code assets Composition Experience

[JZZZ08] 2008 Analyze
and plan

Change
impact

Code assets Composition Experience

[RCC13] 2013
Analyze
and plan

Change
impact Products Clone Validation

Implement
Change
synchronization

[CCS+12] 2012 Verify
Scalable
verification

Variability
model,

Model-
driven

Solution

Code assets

[RKBC12] 2012
Analyze
and plan

Change
impact Product Clone Conceptual

Implement
Change
synchronization

[CCJM12] 2012 Identify
Monitoring
products

Products Model-
driven

Solution

[SPP+13] 2013 Analyze
and plan

Planning Variability
model

Model-
driven

Solution

[PBD+12] 2012 Analyze
and plan

Planning Variability
model

Model-
driven

Validation

[HH07] 2007 Implement
Built-with-
change

SPL
architecture

Composition Solution

[HGR10] 2010 Analyze
and plan

Decision-
making

NA NA Conceptual

[MWB11] 2011 Implement
Change
synchronization

SPL
architecture

Composition Experience

[FGFd14] 2014 Implement
Built-for-
change

Code assets Hybrid Evaluation

[Sch06b] 2006 Verify
Scalable
verification

Variability
model, NA Experience

195

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

SPL
architecture

[McV15] 2015 Implement
Change
synchronization

Code assets Clone Solution

[SC11] 2011 Verify
Inconsistency
checking

Code assets Composition Validation

[KSK08] 2008 Implement
Built-with-
change

Products Composition Solution

[CKM+08] 2008 Identify
Monitoring
products

Products NA Experience

[TBK09] 2009 Analyze
and plan

Change
impact

Variability
model

NA Validation

[DKZH12] 2012 Implement
Change
synchronization

Code assets Composition Validation

[SK14] 2014 Verify
Scalable
verification

Variability
model,

Annotation Validation

code assets
[vO02] 2002 Analyze

and plan
Planning SPL

architecture
Composition Solution

[TBG15] 2015 Verify
Inconsistency
checking

Variability
model

NA Solution

code assets
[SK08] 2008 Analyze

and plan
Planning NA NA Experience

[HFG+10] 2010 Analyze
and plan

Decision-
making

NA NA Validation

[TMN08] 2008
Implement Change

synchronization

Variability
model, Composition Solution
Code assets,
Product

[RUQ+13] 2013 Implement
Built-with-
change

Variability
model

NA Solution

[LDSL07] 2007 Analyze
and plan

Decision-
making

NA NA Solution

196

Chapter A. Papers on SPL evolution classified on facets

[KMNL06]
2006 Implement

Built-with-
change

SPL
architecture

NA Experience

Verify
Inconsistency
checking

[DGRN10] 2010
Implement Change

synchronization

Variability
model,

Model-
driven

Evaluation

Code assets

[JRG+12] 2012 Verify
Inconsistency
checking

Variability
model,

Model-
driven

Validation

Code assets

[MBKM08] 2008 Identify
Monitoring
products

Products Clone Evaluation

[SPZZ10] 2010
Implement Change

synchronization

SPL
architecture,

Model-
driven

Solution

Products

[KC05] 2005 Implement
Change
synchronization

Variability
model

NA Solution

[SV02] 2002 Analyze
and plan

Decision-
making

NA NA Experience

[MW11] 2011
Analyze
and plan

Change
impact

Variability
model,

Model-
driven

Conceptual
SPL
architecture,
Code assets

[MD15] 2015
Implement Change

synchronization
Composition Solution

Code assets,
Products

[HRGL12] 2012 Analyze
and plan

Change
impact

Variability
model

Model-
driven

Validation

[CGCS04] 2004 Analyze
and plan

Decision-
making

NA NA Solution

197

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[DSB09] 2009 Analyze
and plan

Decision-
making

Variability
model

NA Validation

[SK01] 2001 Identify
Monitoring
customer

NA NA Solution

[MARC13] 2013 Analyze
and plan

Change
impact

Variability
model

NA Validation

Table A.4 Primary study facet classification.

198

Appendix B

ETL at CustomDIFF

This Appendix provides the algorithms that describes the ETL process followed
by CustomDIFF.

B.1 Algorithms for the ETL process

Figure B.1: WeatherStationSPL branching model: the master branch holds the
core assets from where SPL products are branched off.

CustomDIFF’s ETL follows traditional DW practices [KR02]. However, the
extraction stage makes some assumptions about the underlying Git repository
structure. The extraction process depends on the Git branching strategy being
used. So far, CustomDIFF supports the branch-and-unite model [BP14]. Here,
the master branch contains core-asset baseline releases while products branch off
the master (see Figure B.1). Later on, product branches can be reunified with the

199

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Algorithm B.1 Mining product customizations.

1 List<CustomizationFacts> MINE_CUSTOMIZATIONS (GitRepository
gitRepo, String baseline_tag)

2

3 List<CustomizationFact> customization_facts = new List<
CustomizationFact> ();

4 Commit baselineCommit = gitRepo.getCommitByTagName(baseline_tag)
;

5

6 List <Tag> all _tags = gitRepo.getAllTags()
7 for each tag in all_tags
8 Commit baseline;
9 if(tag.name.matches(PR_PATTERN)) do

10 baseline = getBaselineForRelease(tag);
11 if(baselineCommit === baseline) do
12 List<Diff> diffs = DIFF(baselineCommit, tag.getCommit())
13 for each diff in diffs
14 List<CustomizationFact> custom_facts =

extractCustomizationFacts (diff, tag);
15 customizations.add(custom_facts);
16 end_for_each
17 end_if
18 end_if
19 end_for_each
20 return customizations;

master branch after releasing the product and pruning the branch.For automated
processing, the following parameters need to be configured beforehand: (1)
PR_PATTERN, i.e the pattern that product release tags should match (e.g. “PR-*”);
(2) BASELINE_PATTERN, i.e the pattern that baseline release tags should match
(e.g. “Baseline-*”), (3) VP_INIT_CLAUSE, i.e. the pattern that variation point
opening clauses should match (e.g. “PV:IFCOND*”), and (4) VP_END_CLAUSE,
i.e. the pattern that product release tag should match (e.g “ENDCOND*”). Next,
we delve into the details 1.

The process starts with the main function called Mine_Customizations2, which
takes a GitRepository and returns the set of customization_facts that have been

1Note that in Git, commits are chained with each other from “parent” to “child”. This means
that, although in Figure B.1 C5 was committed before C7, we can not reach C7 from C5, as C7
points to C5. Likewise, C5 points to C1, and C10 to C9. Keep this fact in mind when reading the
next algorithm.

2This algorithm was implemented in Java, using the JGit library http://www.eclipse.
org/jgit/

200

http://www.eclipse.org/jgit/
http://www.eclipse.org/jgit/

Chapter B. ETL at CustomDIFF

performed to a given baseline by all the products derived from this baseline.
Namely (line 1 in Algorithm B.1):

List<Customization_Facts> Mine_Customizations (GitRepository
gitRepo, String baseline_tag)

where GITREPO stands for the git repository where the SPL is
being developed; BASELINE_TAG stands for the name of the git
tag that identifies the baseline for which the customization facts
will be computed. To illustrate the algorithm with a running
example, take the content of Figure B.1 as the GITREPO; “Baseline-
v1.0” as the value for BASELINE_TAG, “PR-” as the value for
PR_PATTERN, “Baseline-” as the value for BASELINE_PATTERN,
and “PV:INFOND” and “PV:ENDCOND” as the values for
VP_INIT_CLAUSE and VP_END_CLAUSE, respectively. Algorithm
B.1 provides the details:

1. Identify which is the BASELINECOMMIT to analyze (line 4). The
function GETCOMMITBYTAGNAME returns the commit to which the
BASELINE_TAG points to. For our running example BASELINECOMMIT
holds the commit C5.

2. Identify the product releases that were derived from the BASELINECOMMIT
(lines 6-11). This implies to:

(a) From all the tags in GITREPO, identify those that are product releases
(lines 6-9). First, collect all the existing tags in the repository (line
6). For our running example, the variable ALL_TAGS holds now:
London-v1.0, NewYork-v1.0, Paris-v1.0, Berlin-v4.0, Baseline-v0.5
and Baseline-v1.0. Second, filter out those tags that are not product
releases. i.e. those that do not match the PR_PATTERN (line 7-9). For
our running example tags Baseline-v0.5, and Baseline-v1.0 are filtered
out.

(b) Filter out the product releases that were not actually derived from
the BASELINECOMMIT (lines 10-11). This implies, first, to identify
the baseline commit each product release was derived from. This is
calculated by calling to the method GETBASELINEFORRELEASE (line
10), which takes a product release tag (e.g. Berlin-v4.0), traverses
the git history (e.g backwards from C17) until it finds a commit

201

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

tagged with a label that matches the pattern BASELINE_PATTERN (e.g.
Baseline-v1.0), and finally, returns the commit it points to (e.g. C5).
Second, filter out those product releases whose baseline is not equal to
BASELINECOMMIT (line 11). For our running example, the product
release London-v1.0 would be filtered out, as the BASELINE it was
derived from is C3 instead of C5.

3. Finally, compute the customization facts for each product release that was
indeed derived from BASELINECOMMIT (lines 12-16). This implies for
each product release to:

(a) Perform a DIFF operation between the BASELINECOMMIT and the
commit to which the product release tag is pointing to (line 12). For
instance, the DIFF operation for the product release tag Berlin-v4.0
would be as follows: DIFF(C5, C17). The result of the operation, i.e.
DIFFS, is the list of diff-outputs (a.k.a patches), one per file that the
product has changed from the baseline. For instance, if the product
release Berlin-v4.0 changes five files from the baseline, then DIFFS
would contain five diff-output files, each per file changed (see Figure
B.2 as an example of a diff-output).

(b) For each diff-output, extract the customization facts by calling to the
method EXTRACTCUSTOMIZATIONFACTS (line 14). This method,
parses the diff-output, identifies the set of consecutive changes
performed to the same variation point, and returns the corresponding
customization facts (see Algorithm B.2 next).

(c) Finally, add the extracted customization facts to the global container
CUSTOMIZATIONS (line 15), and when all product releases are mined,
return this container (line 20).

202

Chapter B. ETL at CustomDIFF

Figure B.2: The diff-output (a.k.a. patch) for the DIFF(C5, C17), w.r.t file
sensors.js file.

How diff-outputs are read, and constructed, is important to understand our
next algorithm. As a reminder of how a diff-output looks like, take Figure B.2 ,
which shows the changes that product Berlin has performed to the file sensors.js.
The first 4 lines give the details of the file being compared (i.e. sensors.js), and the
rests are the hunks. When comparing two versions of the file, the diff operation
tries to record differences as groups of differing lines, and uses common lines
(context lines) to anchor these groups. Such groups are called hunks of difference
and follow the pattern: @@ old-file-range new-file-range @@ [heading]. Note
how the diff-output in Figure B.2 only contains one hunk. The old-file-
range is in the form: -<start_line>,<number_of_lines>, and new_file_range
is: +<star_line>,<number_of_lines>. Start_line and number_of_lines refer to
the position and the hunk length in the original version the and new version,
respectively. Therefore, the line “var divisor = Meath.round (max -min)/13”
in Figure B.2, corresponds to the line 26 in the older version of the file (i.e
the baseline version of sensors.js), and also corresponds to the line number 26
in the newer version of the file (i.e. the product Berlin version of sensors.js).
Hence, if we would like to know line position for the change “+ var tmp =
getTmpForMeassure(measureText)” in the new version of the file, we would need
to: take the line number 26 (the first line in the hunk), and sum the number of
context lines (+ 3) and the number of added lines (+1) until we reach the line “+

203

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

var tmp = getTmpForMeassure(measureText)”.
The extractCustomizationFacts algorithm takes as input a diff-output (take

the example in Figure B.2), and extracts a set of customization facts, i.e. the
consecutive changes made to a given variation point. Namely:

LIST<CUSTOMIZATION_FACTS> EXTRACTCUSTOMIZATIONFACTS
(DIFF DIFF, TAG PR)

where DIFF stands for the diff-output from which to extract the
customization facts from; and TAG stands for the product release tag
for which the customizations are being computed. As the running
example, take the content of Figure B.2 as the value for the DIFF, and
“PR-Berlin-v4.0” as the value for the TAG. Algorithm B.2 provides
the details:

Algorithm B.2 Extracting customization fatcs from a diff-output file.

1 L i s t < C u s t o m i z a t i o n F a c t > e x t r a c t C u s t o m i z a t i o n F a c t s (S t r i n g d i f f ,
Tag t a g)

2

3 L i s t < C u s t o m i z a t i o n F a c t > c u s t o m i z a t i o n s = new L i s t <
C u s t o m i z a t i o n F a c t > () ;

4 S t r i n g f i l eName = e x t r a c t F i l e N a m e F r o m D i f f (d i f f) ;
5 L i s t < S t r i n g > hunks = d i f f . s p l i t ("@@") ;
6 f o r each hunk i n hunks
7 L i s t < S t r i n g > l i n e s = hunk . s p l i t (" \ n ") ;
8 S t r i n g c u s t o m _ d i f f = " " ;
9 i n t a d d e d _ l i n e s = 0 , d e l e t e d _ l i n e s =0 , c o n t e x t _ l i n e s = 0 ;

10 V a r i a t i o n P o i n t vp ;
11 i n t l ineNumberOld = extrac tLineNumberFromHunk (l i n e s . g e t (1)) ;
12 i n t lineNumberNew = extrac tLineNumberFromHunk (l i n e s . g e t (1)) ;
13 f o r each l i n e i n l i n e s
14 c u s t o m D i f f . c o n c a t . (l i n e) ;
15 i f (l i n e . s t a r t s W i t h (" + ") AND (! l i n e . c o n t a i n s (VP_INIT_CLAUSE))

AND (! l i n e . c o n t a i n s (VP_END_CLAUSE))) / / added l i n e i d e n t i f i e d
16 a d d e d _ l i n e s ++;
17 e l s e i f (l i n e . s t a r t s W i t h (" �") AND (! l i n e . c o n t a i n s (

VP_INIT_CLAUSE)) AND (! l i n e . c o n t a i n s (VP_END_CLAUSE))) / /
d e l e t e d l i n e i d e n t i f i e d

18 d e l e t e d _ l i n e s ++;
19 e l s e i f (l i n e . s t a r t s W i t h (" ") AND (! l i n e . c o n t a i n s (VP_INIT_CLAUSE

)) AND (! l i n e . c o n t a i n s (VP_END_CLAUSE))) / / c o n t e x t l i n e

204

Chapter B. ETL at CustomDIFF

20 c o n t e x t _ l i n e s ++;
21 e l s e i f (l i n e . c o n t a i n s (VP_INIT_CLAUSE) OR (l i n e . c o n t a i n s (

VP_END_CLAUSE))) {
22 vp = e x t r a c t V p F r o m F i l e A n d L i n e (f i l e n a m e , lineNumberNew �1

+ a d d e d _ l i n e s + c o n t e x t _ l i n e s) ;
23 c u s t o m D i f f = f i x H e a d e r F o r C u s t o m D i f f (cus tomDi f f , vp .

g e t E x p r e s s i o n () , l ineNumberOld , lineNumberNew) ;
24 c u s t o m D i f f = c u s t o m D i f f . c o n c a t (l i n e +1) . c o n t a c t (l i n e +1) ;

/ / add c o n t e x t l i n e s
25 C u s t o m i z a t i o n F a c t c u s t = new C u s t o m i z a t i o n F a c t (

cus tomDif f , a d d e d _ l i n e s , d e l e t e d _ l i n e s , vp , t a g . name) ;
26 c u s t o m i z a t i o n s . add (c u s t) ;
27 l ineNumberOld = l ineNumberOld + c o n t e x t _ l i n e s +

d e l e t e d _ l i n e s ;
28 lineNumberNew = lineNumberNew + c o n t e x t _ l i n e s +

a d d e d _ l i n e s ;
29 d e l e t e d _ l i n e s = 0 ; a d d e d _ l i n e s = 0 ; c o n t e x t _ l i n e s = 0 ;
30 e n d _ e l s e _ i f
31 e n d _ f o r _ e a c h
32 i f (vp== n u l l) / / no vp was found
33 vp = e x t r a c t V p F r o m F i l e A n d L i n e (f i l e n a m e , lineNumberNew)
34 hunk = f i x H e a d e r F o r C u s t o m D i f f (hunk , vp . e x p r e s s i o n ,

l ineNumberOld , lineNumberNew) ;
35 C u s t o m i z a t i o n F a c t c u s t = new C u s t o m i z a t i o n F a c t (hunk ,

a d d e d _ l i n e s , d e l e t e d _ l i n e s , vp , t a g . name) ;
36 c u s t o m i z a t i o n s . add (c u s t) ;
37 e n d _ i f
38 e n d _ f o r _ e a c h
39 r e t u r n c u s t o m i z a t i o n s ;

1. Elucidate which is the file name being diff-ed (line 3). This implies calling
to the method EXTRACTFILENAMEFROMDIFF, which takes as input a diff-
output (i.e DIFF), and extracts the FILENAME. For our running example, the
EXTRACTFILENAMEFROMDIFF would return sensors.js.

2. Identify the set of consecutive changed lines that correspond to the same
variation point, and create the corresponding customization facts (lines 14-
35). Namely:

(a) Traverse each HUNK line by line. This requires to:

i. Split the DIFF into HUNKS, and convert each HUNK into a list
of LINES (lines 5-7). For our running example there is only one

205

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

hunk, and the LINES would be those in Figure B.2, excluding the
first four.

ii. Initialize the variables that support the computation of a
customization fact (lines 7-12): the additions, deletions
and context lines (i.e. ADDED_LINES, DELETED_LINES,
CONTEXT_LINES, respectively), the new diff-output, based
on the variation point being affected by the changes (i.e.
CUSTOM_DIFF), the actual variation point (i.e. VP), and the range
information to build the diff correctly (i.e. LINENUMBEROLD,
LINENUMBERNEW).

(b) Until a LINE containing a VP_INIT_CLAUSE or VP_END_CLAUSE is
not identified, increment the corresponding counters when an addition,
deletion, or contextual line is found (lines 16-21).

(c) Create a new customization fact when an LINE containing a
VP_INIT_CLAUSE or VP_END_CLAUSE is identified (lines 23-34).
For our running example, say LINE is equal to “PV:IFCOND
(pv:hasFeature(”Temperature’))”. Namely:

i. Elucidate to which variation point do the already traversed lines
belong to (those lines prior to the VP_INIT_CLAUSE). The
method EXTRACTVPFROMFILEANDLINE takes a FILENAME
and a line number, and returns the variation point to which the
line number belongs to (line 24). The method would return that
the previous line, i.e. “+ var tmp = getTmpForMeasureText”,
belongs to a variation point which expression is (WindSpeed or
AirPressure).

ii. Build up the new diff for the set of consecutive changed lines
(i.e. “+ var tmp = getTmpForMeasureText”). The variable
CUSTOM_DIFF has been recording each traversed line up to the
new variation point (line 15), but needs additional fixes. First,
it needs two more contextual lines (line 26). Second, the hunk
header needs to be changed: the range needs to be fixed, and
the heading needs to state the expression to which the changed
lines affect. The method FIXHEADERFORCUSTOMDIFF would
do both.

iii. Create the new customization fact and add it to the total list of
customizations (lines 28-29).

206

Chapter B. ETL at CustomDIFF

Figure B.3: Custom_diffs obtained after applying Algorithm B.2 to the diff-output
in Figure B.2: VP-1 (top) and VP-2 (bottom).

iv. Finally, reset the variables for the next customization fact to be
identified (lines 31-33).

(d) If no variation point was identified during the analysis of the hunk,
elucidate to which variation point does the DIFF content corresponds
to, and create a customization fact accordingly (lines 36-41).

3. When all the hunks are analyzed, and hence, all customizations facts are
computed, return the total list of customizations (line 39).

Figure B.3 depicts the two CUSTOM_DIFF derived from the main DIFF (depicted
in Figure B.2) after applying extractCustomizationFacts.

207

Appendix C

A brief on git

This Appendix provides a bite on Version Control Systems (VCSs) and git basics.

C.1 Version Control Systems
Version Control Systems (VCSs), a.k.a. revision or source control systems,
are tools that support concurrent and collaborative software processes by: (1)
seamlessly tracking changes to the source code, and (2) letting multiple developers
collaborate efficiently. A VCS repository stores of all the files under version
control, as well as their previous versions. Developers, in order to work on the
source code, check-out a version of the files to a local workspace. Developers
make changes to local files on their workspace, and commit (a.k.a check-in)
to make permanent software changes to the central repository. Commits are
chained together, with each new version committed to the repository. Over time, a
sequence of changes is represented as a series of commits, known as the repository
history. Branches are used to launch a separate lines of development, and
allow the development to continue in multiple directions simultaneously, without
interfering into each others work. Eventually, a branch is merged (fused) with
other branches to reunite disparate efforts, usually, by a three-way merge. As a
result, a new version is created. When this process does not go smoothly (i.e.
different changes where made to the same part of the same file), the user has to
manually resolve the conflicts.

VCSs can broadly be classified into centralized and distributed. Centralized
VCSs (CVCS) came first in history. In a CVCS there is a single central repository
to which which clients synchronize. The local workspace of the clients only holds

209

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

a copy of the files that reside in the server. When any CVCS operation needs
to be performed, e.g committing the changes from the local workspace to the
repository, review the history a file, branch, merge, etc., clients need to connect to
the server. Conversely, in a distributed VCS (DCVS) clients don’t just checkout
the latest version of the files, but they get a full-fledged repository: with the whole
history and the power to exchange source code changes with other repositories,
i.e. peer-to-peer.

DVCS introduce three additional operations to VCSs: clone, push and pull.
A clone, copies a repository into a developers machine. Indeed, in DVCSs each
developer has each own local repository. A clone, is ideally made only once,
i.e. when a developer joints the project for the first time. Afterwards, traditional
VCSs operations (e.g. commit, branch, merge) are performed against developer’s
local repository. To sync with other peers, developers would conduct a push
(publishing local changes to another repository) and pull (getting changes from
a remote repository to a local one) operations. A peer-to-peer collaboration
approach opens new collaboration workflows not previously possible with
centralized VCSs1. Specially, the fork&pull model has been beneficial Open
Source Software projects. Nevertheless, DVCS can mimic a centralized model
if developers sync to a canonical repository and they don’t sync between them.

C.2 A brief on Git and GitHub
Git is a DVCS. The Eclipse Foundation reported in its annual community survey
that as of May 2014, Git is now the most widely used source-code management
tool, with 42.9% of professional software developers reporting that they use Git
as their primary source control system2. This figure grounds the selection of
Git in this Thesis. This section outlines the main operations supported by Git
(i.e. commit, branch and merge) and its web counterpart, GitHub (i.e. fork and
pullRequest).

C.2.1 Data Structures: the Git Object Model
The major difference between Git and other VCSs (e.g. CVS, Subversion) is the
way it stores data: as a set of snapshots of a mini filesystem instead of a set of
changes. Every time a client saves (i.e. commits) the state of the project, Git

1https://tinyurl.com/jb37na6
2https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/

210

https://ianskerrett.wordpress.com/2014/06/23/eclipse-community-survey-2014-results/

Chapter C. A brief on git

Figure C.1: Git Object Model

takes a snapshot of all the files. Git includes four objects: TREE, BLOB, COMMIT
and TAG (see Figure C.1) which are characterized along the following properties:
sha (unique hash identifier based on the objects’ content), type (“tree”, “blob”,
“commit” or “tag”), content and size (in bytes). TREE objects, represent file-
system directories, which can contain further TREEs and BLOBs. BLOB objects,
represent a file storing data. COMMIT objects, represent a version (i.e. snapshot)
for the project at a certain time. COMMIT’s project attribute, hold the top-level
directory for the project artefacts. Commit objects, are preceded by its antecesor
commit (zero parents for the first commit in the commit history, one parent for a
normal commit, and multiple parents for a commit that results from a merge of
two or more branches). Commit objects, contain additional metadata: message
(user entered message describing the changes), commiter (the user who performs
the commit), author (the user responsible for the change) and time (the moment
on which the commit was performed). Note, that a COMMIT object does not
itself contain any information about what was actually changed. All changes are
calculated by comparing the contents of the project tree referred to by the commit,

211

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

with the trees associated with its parent. Finally, TAG objects serve to tag special
commits, such as, releases, hot-fixes, etc. A Git REPOSITORY, comprises all
objects aforementioned. Additionally, Git repositories, have BRANCHEs, which
is just a lightweight movable pointer to a COMMIT. Git repositories must have at
least one branch (i.e. the default branch). The default branch, is destined for the
main-line of development. When a Git repository is created, Git automatically
creates a branch named master, and sets it as the repository’s default branch.
Git repositories further include: repository owner user, repository name, a little
description about the repository project, the currentBranch the user is working at,
the uri of the repository, a origin, if the repository is a clone of another Git the
repository, and the remote repository to which it synchronizes (if any).

C.2.2 Git Basic Operations
Commit. A commit operation makes permanent the software changes to a
repository. Git, converts the users’ working directory into a Git snapshot, i.e.
COMMITObject(see Figure C.2). When a commit operations is performed, the
branch moves forward automatically, pointing to the last commit performed. This
way, commit objects are chained together, with each new snapshot pointing to its
predecessor (c2 points to c1). Over time, a sequence of changes is represented as
a series of commit objects, known as the repository history. The operation, can be
implicitly described as, COMMIT: USER X REPOSITORY X BRANCH X TREE X
STRING -> COMMITOBJECT

3.

Branch. It launches a separate line of development. Branches are created
upon an existing commit (users must set first the branch-to-be name). Figure
C.3, depicts the repository before and after performing a branch operation to
create branch1 upon master. When branch operation is performed, branch1
points to c2 commit object. Further commits to branch1 (i.e. commit c3), make
the two branches diverge. The branch operation can be described as BRANCH:
REPOSITORY x BRANCH x IDENTIFIER -> BRANCH.

Merge. Often, a branch is fused (i.e. merged) with other branches to reunite
disparate efforts. Figure C.4, depicts a merge operation scenario, where the
headBranch will be merged into the baseBranch. Git does a simple three-way
merge, using the two commit objects pointed to by branches c3 and c2, and

3We distinguish commit operation and commit object as, COMMIT and COMMITOBJECT,
respectively.

212

Chapter C. A brief on git

Figure C.2: Commit operation

Figure C.3: Branch + Commit Operation

213

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

Figure C.4: Merge Operation

Figure C.5: Fork Operation
their common ancestor (i.e. c1). As a result, a new commit, c4, is created for
baseBranch. When this process does not go smoothly (i.e. different changes
where made to the same part of the same file), Git adds standard conflict-
resolution markers to the files that have conflicts, so that users can detect them,
and resolve them manually. The merge operation can be defined as: MERGE: User
X Repository X Branch X Branch -> COMMITOBJECT.

GitHub4 is the largest open source Git repository hosting service. GitHub
provides a Web-based graphical interface, and introduces social functionalities
that make developer’s identity and activities visible to other users [ref -Social
Coding in GitHub]. This is particularly interesting for SPLs where two different
teams need to collaborate: domain engineers and application engineers. GitHub
introduces two new operations: fork and pull request.

Fork. This is the mechanism to make copies (i.e. clones) of entire repositories
across GitHub users. When a user clicks on the fork button, GitHub automatically
copies that repository to the user who requests the fork. This operation keeps
both repositories connected, the source repository knows all its forks repositories,
while the forked repository sets its origin attribute with the source repository uri .
Fork operation is defined as, FORK: REPOSITORY X USER -> REPOSITORY.

Pull request. Whenever one of the users thinks his changes to the repository
are appropriate for the other party, he can send him back as form of a pull request.

4https://github.com/

214

Chapter C. A brief on git

Figure C.6: GitHub additional object Model (partial model).
A pull request operation, is basically a merge request between two repository
branches. The user sending the request must specify the following attributes:
(i) the base repository and base branch, where changes should be applied, (ii)
the head repository and the head branch, meaning what changes the user like to
apply, and (iii) a message, describing the proposed changes. Changing the base
repository branch, changes who is notified of the pull request (the base repository
gets the request). Once a pull request is sent, interested parties can review the set
of changes, discuss potential modifications, and even push follow-up commits if
necessary. A pull request operation can be described as: CREATEPULLREQUEST:
USER x REPOSITORY x REPOSITORY X BRANCH X BRANCH ->PULLREQUEST.
Both operations, require Git to handle additional objects, which are depicted in
Figure C.6. This model of collaboration is commonly called the fork&pull model,
which is very popular for the development of open-source projects.

C.3 Branching models in VCSs
A branching model embodies the rationales adopted for branching and merging
configuration items within a VCS [WS02b]. It closely matches a team’s software
development process: it tells (1) how developers develop and collaborate with
each other for new development, (2) how engineers release software both to test
department and customers, and (3) how they deal with production fixes, i.e bugs
that occur to the software released to customers. There is no a one-fit-all branching

215

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

model, and each team needs to find its own.
Inherent to branching models there is the notion of the integration branch

(a.k.a. mainline or trunk), where all developers integrate their changes to
collaborate. The integration branch holds the current state of the project, and
it is usually from where automated or nightly builds are triggered. Additionally,
dedicated feature branches, i.e. auxiliary branches that branch from the integration
branch, might be used to develop codebase changes without interfering other
teammates. These branches should be as short-lived as possible to avoid deviating
to much from the mainline and avoid merge hell. Finally, release branches serve
to prepare a software release to distribute it outside the development activity (e.g.
to customers or QA testing). It might hold also to small bug-fixes prior to the
actual software release. The final version produced after QA that is released for
production is usually tagged within the release branch (so that it can be identified
for future needs). However, some others prefer to merge it to release (a.k.a
production) branches, which only holds the sequential versions of the software
released to customers. These different purposes call for different branches within
the VCS project.

Next, we describe four branching models though for single-systems, each of
which is suitable for a different development practice.

Git-flow [Gitb] supports formal releases on a longer term interval (a few weeks
to a few months) [cha] (see Figure C.7-B). For parallel development
feature branches are used, i.e. short-lived branches aimed to develop new
functionality without interfering with other teammates work. Collaboration
between all developers is achieved when feature branches are merged to
develop, i.e. the integration branch (from where nightly build should be
triggered). When all the features planned for the next release have reached
the integration branch, a release branch is created for testing and bug-fixing
all products before is sent to production. When it reaches the desired quality,
it is merged to master, i.e. the release branch that holds all sequential
versions of the core assets from where products are released to customer,
and tagged. Production bugs are solved through hotfix branches.

Trunk-based [tru] supports continuous integration (CI), i.e. “a software
development practice where members of a team integrate at least daily”
[CI-]. There are no parallel branches for development (see Figure C.7-a).
Instead, all developers work together in a single branch, i.e. the integration

216

Chapter C. A brief on git

(a) Trunk-based (b) Git-flow

(c) Github-flow (d) Code:U
integration
branch

feature
branches

maintenance
branches stable release

Figure C.7: Branching models for CPF (single-systems).

217

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

branch 5. The only branches permitted are release branches, used for testing
the software. If during such testing bugs are identified these are worked
in the integration branch and cherry-picked to the release branch. When
the software is stable is it tagged and send to production. To resolve any
production bug a similar approach is conducted. Instead, others advocate to
also work the defects within the release branch and cherry-pick them to the
integration branch (e.g. [bar]).

CoDe:U [CoD] supports a continuous delivery (CoDe) [HF10] approach (see
Figure C.7-D). Based on git-flow, CoDe:U automates all merges between
branches, by an automated delivery pipeline [HF10] , which covers all
required steps, e.g retrieving code from the repository, building binaries
and running tests. The single branches engineers can use for development
and bug-fixing are feature branches. The rest is automated by pipeline that
will: (1) merge commits from feature branch to the integration branch only
if the result is a build-able state, (2) merge integration to the stable if it
passes, e.g., regression tests, and (3) merge to the release branch if, e.g., the
commit in stable is delivered to production. To deal with production fixes,
maintenance branches are used.

Github-flow [gita] supports continuous deployment (CoDep) practice, specially
targeted for web applications. CoDep extends CoDe by deploying to
production every change committed to the integration branch (upon success
of build and requires automated tests). Hence, anything in the integration
branch is deployable (see Figure C.7-C). Github-flow uses feature branches
for parallel development. When developers are ready to integrate feature
branches they will issue a pull-requests6 (PR). The PR will be reviewed
by other teammates and signed off. Additionally, a build job would check
wether the resulting merge of the PR is build-able. Only when the PR passes
the review and the build, it is merged to the integration branch and deployed
to production. To solve a production bug the same process needs to be
carried out. No release branches are used, neither tags to identify releases.

5Teams might use feature toggles and branch by abstraction to disable uncompleted features.
6https://help.github.com/articles/about-pull-requests/

218

Bibliography

[3waa] Panlo santos. Three-way merging: A look under the hood. http://www.drdobbs.com/tools/
three-way-merging-a-look-under-the-hood/240164902. Accessed: 2018-03-26.

[3wab] Slant.co. What are the best visual merge tools for git? https://www.slant.co/topics/48/
~best-visual-merge-tools-for-git. Accessed: 2018-03-26.

[ABCO98] Brad Appleton, S Berczuk, R Cabrera, and R Orenstein. Streamed Lines : Branching Patterns for
Parallel Software Development. PLoP conf., 98:98–25, 1998.

[ABKS13a] Sven Apel, Don S Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer, 2013.

[ABKS13b] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer, 2013.

[AC07] Sangim Ahn and Kiwon Chong. Requirements Change Management on Feature-Oriented Requirements
Tracing. In Computational Science and Its Applications - {ICCSA} 2007, International Conference,
Kuala Lumpur, Malaysia, August 26-29, 2007. Proceedings, Part {II}, pages 296–307, 2007.

[ACA08] Vander Alves, Tarcisio Camara, and Carina Frota Alves. Experiences with mobile games product line
development at meantime. In Software Product Lines, 12th International Conference, SPLC 2008,
Limerick, Ireland, September 8-12, 2008, Proceedings, pages 287–296, 2008.

[AD07] Samuel Ajila and Razvan T. Dumitrescu. Experimental use of code delta, code churn, and rate of change
to understand software product line evolution. Journal of Systems and Software, 80(1):74–91, 2007.

[AGM+06] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, and Carlos José Pereira
de Lucena. Refactoring product lines. In Generative Programming and Component Engineering, 5th
International Conference, {GPCE} 2006, Portland, Oregon, USA, October 22-26, 2006, Proceedings,
pages 201–210, 2006.

[AJB+14a] Michał Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas Schmorleiz, Ralf
Lammel, Stefan Stanciulescu, Andrzej Wasowski, and Ina Schaefer. Flexible product line engineering
with a virtual platform. Companion Proceedings of the 36th International Conference on Software
Engineering - ICSE Companion 2014, pages 532–535, 2014.

[AJB+14b] Michal Antkiewicz, Wenbin Ji, Thorsten Berger, Krzysztof Czarnecki, Thomas Schmorleiz, Ralf
Lämmel, Stefan Stanciulescu, Andrzej Wasowski, and Ina Schaefer. Flexible product line engineering
with a virtual platform. In 36th International Conference on Software Engineering, ICSE ’14,
Companion Proceedings, Hyderabad, India, May 31 - June 07, 2014, pages 532–535, 2014.

[AK08] Samuel A Ajila and Ali B Kaba. Evolution support mechanisms for software product line process.
Journal of Systems and Software, 81(10):1784–1801, 2008.

219

http://www.drdobbs.com/tools/three-way-merging-a-look-under-the-hood/240164902
http://www.drdobbs.com/tools/three-way-merging-a-look-under-the-hood/240164902
https://www.slant.co/topics/48/~best-visual-merge-tools-for-git
https://www.slant.co/topics/48/~best-visual-merge-tools-for-git

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[AKEs12] Walid Abdelmoez, Hatem Khater, and Noha El-shoafy. Comparing maintainability evolution of object-
oriented and aspect-oriented software product lines. In 18th International Conference on informatics
and Systems (INFOS 2012), pages 53–60, 2012.

[AKL13] Sven Apel, Christian Kästner, and Christian Lengauer. Language-independent and automated software
composition: The featurehouse experience. IEEE Trans. Software Eng., 39(1):63–79, 2013.

[AKM+10] Nicolas Anquetil, Uirá Kulesza, Ralf Mitschke, Ana Moreira, Jean-Claude Royer, Andreas Rummler,
and André Sousa. A model-driven traceability framework for software product lines. Software and
System Modeling, 9(4):427–451, 2010.

[All] Visualizing categorical data as flows with alluvial diagrams. http://digitalsplashmedia.
com/2014/06/visualizing-categorical-data-as-flows-with-alluvial-diagrams/.
Accessed: 2018-03-26.

[Ana09] Michail Anastasopoulos. Increasing Efficiency and Effectiveness of Software Product Line Evolution:
An Infrastructure on Top of Configuration Management. In Proceedings of the Joint International and
Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and Software Evolution (Evol)
Workshops, IWPSE-Evol ’09, pages 47–56, New York, NY, USA, 2009. ACM.

[Ana13] Michail Anastasopoulos. Evolution Control for Software Product Lines: An Automation Layer over
Configuration Management. PhD thesis, Fraunhofer IESE, 2013.

[and82] Fred K. Weigel and. Innovation characteristics and innovation adoption-implementation: A meta-
analysis of findings. In IEEE Transactions on Engineering Management, pages 28–45, 1982.

[ANS+04] Walid Abdelmoez, Diaa Eldin M Nassar, Mark Shereshevsky, Nicholay Gradetsky, Rajesh Gunnalan,
Hany H Ammar, Bo Yu, and Ali Mili. Error Propagation In Software Architectures. In 10th {IEEE}
International Software Metrics Symposium {(METRICS} 2004), 11-17 September 2004, Chicago, IL,
{USA}, pages 384–393, 2004.

[AP98] Ritu Agarwal and Jayesh Prasad. A conceptual and operational definition of personal innovativeness in
the domain of information technology. Information Systems Research, 9(2):204–215, 1998.

[APT12] Maria Carmela Annosi, Massimiliano Di Penta, and Genny Tortora. Managing and assessing the risk of
component upgrades. In Proceedings of the Third International Workshop on Product LinE Approaches
in Software Engineering, {PLEASE} 2012, Zurich, Switzerland, June 4, 2012, pages 9–12, 2012.

[aSSLX+18] S. Zhou ansd S. Stanciulescu, O. Lessenich, Y. Xiong, A. Wasowski, , and C. K/astner. Identifying
features in forks. International Conference on Software Engineering ICSE’18, 2018.

[AYD13] Nur Hani Zulkifli Abai, Jamaiah H. Yahaya, and Aziz Deraman. User requirement analysis in
data warehouse design: A review. Procedia Technology, 11(Supplement C):801 – 806, 2013. 4th
International Conference on Electrical Engineering and Informatics, ICEEI 2013.

[bar] https://barro.github.io/2016/02/a-succesful-git-branching-model-considered-harmful/.

[BB11] Joerg Bartholdt and Detlef Becker. Re-engineering of a hierarchical product line. In Software Product
Lines - 15th International Conference, SPLC 2011, Munich, Germany, August 22-26, 2011, pages 232–
240, 2011.

[BBHL94] Barry W Boehm, Prasanta K Bose, Ellis Horowitz, and Ming June Lee. Software requirements
as negotiated win conditions. In Proceedings of the First {IEEE} International Conference on
Requirements Engineering, {ICRE} ’94, Colorado Springs, Colorado, USA, April 18-21, 1994, pages
74–83, 1994.

220

http://digitalsplashmedia.com/2014/06/visualizing-categorical-data-as-flows-with-alluvial-diagrams/
http://digitalsplashmedia.com/2014/06/visualizing-categorical-data-as-flows-with-alluvial-diagrams/

BIBLIOGRAPHY

[BCC98] Sergey Berezin, Sergio Campos, and EdmundM. Clarke. Compositional Reasoning in Model Checking.
In Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli, editors, Compositionality: The
Significant Difference, volume 1536 of Lecture Notes in Computer Science, pages 81–102. Springer
Berlin Heidelberg, 1998.

[BGvS10] Isela Macia Bertran, Alessandro Garcia, and Arndt von Staa. Defining and Applying Detection
Strategies for Aspect-Oriented Code Smells. In 24th Brazilian Symposium on Software Engineering,
{SBES} 2010, Salvador, Bahia, Brazil, September 27 - October 1, 2010, pages 60–69, 2010.

[Bla02] A. F. Blackwell. First steps in programming: a rationale for attention investment models. In Proceedings
IEEE 2002 Symposia on Human Centric Computing Languages and Environments, pages 2–10, 2002.

[BLL08] Hongyu Pei Breivold, Stig Larsson, and Rikard Land. Migrating industrial systems towards software
product lines: Experiences and observations through case studies. In 34th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2008, September 3-5, 2008, Parma, Italy,
pages 232–239, 2008.

[BM14] Jorge Barreiros and Ana Moreira. A cover-based approach for configuration repair. In 18th International
Software Product Line Conference, {SPLC} ’14, Florence, Italy, September 15-19, 2014, pages 157–166,
2014.

[Böc05] Günter Böckle. Innovation Management for Product Line Engineering Organizations. In Software
Product Lines, 9th International Conference, {SPLC} 2005, Rennes, France, September 26-29, 2005,
Proceedings, pages 124–134, 2005.

[Boh96] Shawn A Bohner. Impact analysis in the software change process: a year 2000 perspective. In 1996
International Conference on Software Maintenance {(ICSM} ’96), 4-8 November 1996, Monterey, CA,
USA, Proceedings, pages 42–51, 1996.

[Bos01] Jan Bosch. Software product lines: Organizational alternatives. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE 2001, 12-19 May 2001, Toronto, Ontario, Canada, pages
91–100, 2001.

[Bos02] Jan Bosch. Maturity and Evolution in Software Product Lines: Approaches, Artefacts and Organization.
In Software Product Lines, Second International Conference, {SPLC} 2, San Diego, CA, USA, August
19-22, 2002, Proceedings, pages 257–271, 2002.

[BP14] Goetz Botterweck and Andreas Pleuss. Evolution of Software Product Lines. In Evolving Software
Systems, pages 265–295. 2014.

[BPPK09] Goetz Botterweck, Andreas Pleuss, Andreas Polzer, and Stefan Kowalewski. Towards feature-driven
planning of product-line evolution. In Proceedings of the First International Workshop on Feature-
Oriented Software Development, {FOSD} 2009, Denver, Colorado, USA, October 6, 2009, pages 109–
116, 2009.

[BPS+12] Sebastian Barney, Kai Petersen, Mikael Svahnberg, Aybüke Aurum, and Hamish T. Barney. Software
quality trade-offs: A systematic map. Information & Software Technology, 54(7):651–662, 2012.

[BPSP04] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat. Variability management with
feature models. Sci. Comput. Program., 53(3):333–352, 2004.

[BR00] Keith H Bennett and Václav Rajlich. Software maintenance and evolution: a roadmap. In 22nd
International Conference on on Software Engineering, Future of Software Engineering Track, {ICSE}
2000, Limerick Ireland, June 4-11, 2000., pages 73–87, 2000.

221

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[Bre] Danilo Breuche. Product line engineering. https://productlines.wordpress.com/2011/12/20/strategies-
for-releases-development-and-maintenance-in-product-line-part-2-release-and-maintenance/ Last
accessed: 1 March, 2018.

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-wise refinement. In International
Conference on Software Engineering (ICSE)., 2003.

[BTBK08] David Budgen, Mark Turner, Pearl Brereton, and Barbara Kitchenham. Using mapping studies in
software engineering. In Proceedings of Psychology of Programming Interest Group (PPIG), volume 8,
pages 195–204, 2008.

[BTG12] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. A theory of software product line refinement. Theor.
Comput. Sci., 455:2–30, 2012.

[CB11] Lianping Chen and Muhammad Ali Babar. A systematic review of evaluation of variability management
approaches in software product lines. Information & Software Technology, 53(4):344–362, 2011.

[CBT+14] Rafael Capilla, Jan Bosch, Pablo Trinidad, Antonio Ruiz Cortés, and Mike Hinchey. An overview of
Dynamic Software Product Line architectures and techniques: Observations from research and industry.
Journal of Systems and Software, 91:3–23, 2014.

[CCG+03] Ping Chen, Matt Critchlow, Akash Garg, Christopher van der Westhuizen, and André van der Hoek.
Differencing and Merging within an Evolving Product Line Architecture. In Software Product-Family
Engineering, 5th International Workshop, {PFE} 2003, Siena, Italy, November 4-6, 2003, Revised
Papers, pages 269–281, 2003.

[CCJM12] Stephen Creff, Joël Champeau, Jean-Marc Jézéquel, and Arnaud Monégier. Model-based product
line evolution: an incremental growing by extension. In 16th International Software Product Line
Conference, SPLC ’12, Salvador, Brazil - September 2-7, 2012, Volume 2, pages 107–114, 2012.

[CCS+12] Maxime Cordy, Andreas Classen, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. Managing
evolution in software product lines: a model-checking perspective. In Sixth International Workshop
on Variability Modelling of Software-Intensive Systems, Leipzig, Germany, January 25-27, 2012.
Proceedings, pages 183–191, 2012.

[CDG+12] Bruno Barbieri Pontes Cafeo, Francisco Dantas, Alessandro Cavalcante Gurgel, Everton T Guimarães,
Elder Cirilo, Alessandro F Garcia, and Carlos José Pereira de Lucena. Analysing the Impact of Feature
Dependency Implementation on Product Line Stability: An Exploratory Study. In 26th Brazilian
Symposium on Software Engineering, {SBES} 2012, Natal, Brazil, September 23-28, 2012, pages 141–
150, 2012.

[CdOW11] Chessman K F Corrêa, Toacy Cavalcante de Oliveira, and Cláudia Maria Lima Werner. An analysis of
change operations to achieve consistency in model-driven software product lines. In Software Product
Lines - 15th International Conference, {SPLC} 2011, Munich, Germany, August 22-26, 2011. Workshop
Proceedings (Volume 2), page 24, 2011.

[CGCS04] Yu Chen, Gerald C Gannod, James S Collofello, and Hessam S Sarjoughian. Using Simulation to
Facilitate the Study of Software Product Line Evolution. In 7th International Workshop on Principles
of Software Evolution {(IWPSE} 2004), 6-7 September 2004, Kyoto, Japan, pages 103–112, 2004.

[CGM14] Sven Casteleyn, Irene Garrigós, and Jose-Norberto Mazón. Ten years of rich internet applications: A
systematic mapping study, and beyond. TWEB, 8(3):18:1–18:46, 2014.

[cha] Scott chacon’s blog. http://scottchacon.com/2011/08/31/github-flow.html.

[CI-] Martin fowler blog. https://www.martinfowler.com/articles/continuousintegration.html.

222

BIBLIOGRAPHY

[CKM+08] Ralf Carbon, Jens Knodel, Dirk Muthig, Gerald Meier, and Testo Ag. Providing Feedback from
Application to Family Engineering - The Product Line Planning Game at the Testo AG. Proceeding
of the 12th International Software Product Line Conference (SPLC), (01):180–189, 2008.

[CL01] Richard Cardone and Calvin Lin. Comparing Frameworks and Layered Refinement. In Proceedings of
the 23rd International Conference on Software Engineering, {ICSE} 2001, 12-19 May 2001, Toronto,
Ontario, Canada, pages 285–294, 2001.

[CN01a] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns. Addison-Wesley
Professional, 2001.

[CN01b] Paul Clements and Linda M. Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[CNLL15] Fabio Calefato, Roberto De Nicolò, Filippo Lanubile, and Fabrizio Lippolis. Product Line Engineering
for NGO Projects. pages 1–4, 2015.

[CoD] An automated git branching model. http://www.josra.org/blog/an-automated-git-branching-
strategy.html.

[DA15] Oscar Díaz and Cristobal Arellano. The augmented web: Rationales, opportunities and challenges on
browser-side transcoding. To appear at ACM Transactions on the Web, 2015.

[Dan] Danfoss drives in the product line hall of fame. http://splc.net/hall-of-fame/
danfoss-drives/. Accessed: 2018-02-23.

[Dav89] Fred D. Davis. Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS Q., 13(3):319–340, September 1989.

[DBG+15] Martin Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane Ducasse. Untangling
fine-grained code changes. In 22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015, pages 341–350, 2015.

[DCB09] Benjamin Delaware, William R Cook, and Don Batory. Fitting the Pieces Together: A Machine-
checked Model of Safe Composition. In Proceedings of the the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, ESEC/FSE ’09, pages 243–252, New York, NY, USA, 2009. ACM.

[dCM+11] Paulo Anselmo da Mota Silveira Neto, Ivan Do Carmo Machado, John D McGregor, Eduardo Santana
de Almeida, and Silvio Romero de Lemos Meira. A systematic mapping study of software product lines
testing. Information and Software Technology, 53(5):407–423, may 2011.

[DD08] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development: A systematic review.
Information & Software Technology, 50(9-10):833–859, 2008.

[ddC+12] Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo Machado, Yguaratã Cerqueira Cavalcanti,
Eduardo Santana de Almeida, Vinicius Cardoso Garcia, and Silvio Romero de Lemos Meira. An
experimental study to evaluate a {SPL} architecture regression testing approach. {IEEE} 13th
International Conference on Information Reuse {&} Integration, {IRI} 2012, Las Vegas, NV, USA,
August 8-10, 2012, pages 608–615, 2012.

[DGRN10] Deepak Dhungana, Paul Grünbacher, Rick Rabiser, and Thomas Neumayer. Structuring the modeling
space and supporting evolution in software product line engineering. Journal of Systems and Software,
83(7):1108–1122, jul 2010.

223

http://splc.net/hall-of-fame/danfoss-drives/
http://splc.net/hall-of-fame/danfoss-drives/

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[DKL09] Slawomir Duszynski, Jens Knodel, and Mikael Lindvall. {SAVE:} Software Architecture Visualization
and Evaluation. In 13th European Conference on Software Maintenance and Reengineering, {CSMR}
2009, Architecture-Centric Maintenance of Large-SCale Software Systems, Kaiserslautern, Germany,
24-27 March 2009, pages 323–324, 2009.

[DKO+97] David Dikel, David Kane, Steve Ornburn, William Loftus, and Jim Wilson. Applying Software Product-
Line Architecture. {IEEE} Computer, 30(8):49–55, 1997.

[DKvDP15] Nicolas Dintzner, Uirá Kulesza, Arie van Deursen, and Martin Pinzger. Evaluating Feature Change
Impact on Multi-product Line Configurations Using Partial Information. In Software Reuse for Dynamic
Systems in the Cloud and Beyond - 14th International Conference on Software Reuse, {ICSR} 2015,
Miami, FL, USA, January 4-6, 2015. Proceedings, pages 1–16, 2015.

[DKZH12] Tejinder Dhaliwal, Foutse Khomh, Ying Zou, and Ahmed E Hassan. Recovering commit dependencies
for selective code integration in software product lines. In 28th {IEEE} International Conference on
Software Maintenance, {ICSM} 2012, Trento, Italy, September 23-28, 2012, pages 202–211, 2012.

[DLHE14] Andreas Demuth, Roberto E Lopez-Herrejon, and Alexander Egyed. Automatic and incremental product
optimization for software product lines. Proceeding of the 7th International Conference on Software
Testing, Verification and Validation (ICST), pages 31–40, 2014.

[DLS05] Gan Deng, Gunther Lenz, and Douglas C Schmidt. Addressing Domain Evolution Challenges
in Software Product Lines. In Satellite Events at the MoDELS 2005 Conference, MoDELS 2005
International Workshops, Doctoral Symposium, Educators Symposium, Montego Bay, Jamaica, October
2-7, 2005, Revised Selected Papers, pages 247–261, 2005.

[DNGR08] Deepak Dhungana, Thomas Neumayer, Paul Grünbacher, and Rick Rabiser. Supporting Evolution in
Model-Based Product Line Engineering. In Software Product Lines, 12th International Conference,
{SPLC} 2008, Limerick, Ireland, September 8-12, 2008, Proceedings, pages 319–328, 2008.

[dOBN12] Thiago Henrique Burgos de Oliveira, Martin Becker, and Elisa Yumi Nakagawa. Supporting the analysis
of bug prevalence in software product lines with product genealogy. SPLC - International Conference
on Software product lines, page 181, 2012.

[DPG14] Jessica Díaz, Jennifer Pérez, and Juan Garbajosa. Agile product-line architecting in practice: A case
study in smart grids. Information & Software Technology, 56(7):727–748, 2014.

[DRB+13] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Martin Becker, and Krzysztof
Czarnecki. An exploratory study of cloning in industrial software product lines. Proceedings of the
European Conference on Software Maintenance and Reengineering, CSMR, pages 25–34, 2013.

[DRC13] Robert Dyer, Hridesh Rajan, and Yuanfang Cai. Language Features for Software Evolution and Aspect-
Oriented Interfaces: An Exploratory Study. T. Aspect-Oriented Software Development, 10:148–183,
2013.

[DSB05] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Product derivation in software product families: A
case study. Journal of Systems and Software, 74(2 SPEC. ISS.):173–194, 2005.

[DSB09] Sybren Deelstra, Marco Sinnema, and Jan Bosch. Variability assessment in software product families.
Information and Software Technology, 51(1):1487–1510, 2009.

[Duv07] Continuous Integration: Improving Software Quality and Reducing Risk. Addison Wesley, 2007.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An empirical analysis of C preprocessor use. IEEE
Trans. Software Eng., 28(12):1146–1170, 2002.

224

BIBLIOGRAPHY

[ER10] Emelie Engström and Per Runeson. A Qualitative Survey of Regression Testing Practices. In
Proceedings of the 11th International Conference on Product-Focused Software Process Improvement,
PROFES’10, pages 3–16, Berlin, Heidelberg, 2010. Springer-Verlag.

[ER11] Emelie Engström and Per Runeson. Software Product Line Testing - A Systematic Mapping Study. Inf.
Softw. Technol., 53(1):2–13, 2011.

[FA75] Martin Fishbein and Icek Ajzen. Reading, Mass Addison-Wesley Pub. Co., 1975.

[Fav97] Jean-Marie Favre. Understanding-in-the-large. In 5th International Workshop on Program
Comprehension (WPC ’97), May 28-30, 1997 - Dearborn, MI, USA, pages 29–38, 1997.

[FCS+08] Eduardo Figueiredo, Nélio Cacho, Cláudio Sant’Anna, Mario Monteiro, Uirá Kulesza, Alessandro
Garcia, Sérgio Soares, Fabiano Cutigi Ferrari, Safoora Shakil Khan, Fernando Castor Filho, and
Francisco Dantas. Evolving software product lines with aspects: an empirical study on design stability.
30th International Conference on Software Engineering {(ICSE} 2008), Leipzig, Germany, May 10-18,
2008, pages 261–270, 2008.

[FGFd14] Gabriel Coutinho Sousa Ferreira, Felipe Nunes Gaia, Eduardo Figueiredo, and Marcelo de Almeida
Maia. On the use of feature-oriented programming for evolving software product lines - {A}
comparative study. Sci. Comput. Program., 93:65–85, 2014.

[FLLE16] Stefan Fischer, Lukas Linsbauer, Roberto E. Lopez-Herrejon, and Alexander Egyed. Enhancing clone-
and-own with systematic reuse for developing software variants. In Software Engineering 2016,
Fachtagung des GI-Fachbereichs Softwaretechnik, 23.-26. Februar 2016, Wien, Österreich, pages 95–
96, 2016.

[FSK+16] Thomas Fogdal, Helene Scherrebeck, Juha Kuusela, Martin Becker, and Bo Zhang. Ten years of product
line engineering at danfoss: lessons learned and way ahead. In Proceedings of the 20th International
Systems and Software Product Line Conference, SPLC 2016, Beijing, China, September 16-23, 2016,
pages 252–261, 2016.

[FV03] D. Faust and Chris Verhoef. Software product line migration and deployment. Softw., Pract. Exper.,
33(10):933–955, 2003.

[GCC+03] Akash Garg, Matt Critchlow, Ping Chen, Christopher van der Westhuizen, and André van der Hoek.
An Environment for Managing Evolving Product Line Architectures. In 19th International Conference
on Software Maintenance {(ICSM} 2003), The Architecture of Existing Systems, 22-26 September 2003,
Amsterdam, The Netherlands, page 358, 2003.

[GF11] Nadia Gámez and Lidia Fuentes. Software Product Line Evolution with Cardinality-Based Feature
Models. In Top Productivity through Software Reuse - 12th International Conference on Software Reuse,
{ICSR} 2011, Pohang, South Korea, June 13-17, 2011. Proceedings, pages 102–118, 2011.

[GF13] Nadia Gámez and Lidia Fuentes. Architectural evolution of FamiWare using cardinality-based feature
models. Information and Software Technology, 55(3):563–580, 2013.

[GFFd14] Felipe Nunes Gaia, Gabriel Coutinho Sousa Ferreira, Eduardo Figueiredo, and Marcelo de Almeida
Maia. A quantitative and qualitative assessment of aspectual feature modules for evolving software
product lines. Sci. Comput. Program., 96:230–253, 2014.

[gita] Github flow. https://githubflow.github.io/.

[Gitb] A successful git branching model. http://nvie.com/posts/a-successful-git-branching-model.

225

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[GLA+09] Dharmalingam Ganesan, Mikael Lindvall, Christopher Ackermann, David McComas, and Maureen
Bartholomew. Verifying architectural design rules of the flight software product line. In Software
Product Lines, 13th International Conference, {SPLC} 2009, San Francisco, California, USA, August
24-28, 2009, Proceedings, pages 161–170, 2009.

[GP06] Jilles Van Gurp and Christian Prehofer. Version management tools as a basis for integrating Product
Derivation and Software Product Families. SPLC, 2006.

[GpKL14] Thomas Devine Katerina Goseva-popstajanova, Sandeep Krishnan, and Robyn R Lutz. Assessment and
cross-product prediction of SPL quality: accounting for reuse across products , over multiple releases.
Automated Software Engineering, 2014.

[Gru07] Boris Gruschko. Changes classification in {M2} models. In Software Engineering 2007 - Beitr{ä}ge
zu den Workshops, Fachtagung des GI-Fachbereichs Softwaretechnik, 27.-30.3.2007 in Hamburg, pages
277–280, 2007.

[GS03] Jack Greenfield and Keith Short. Software factories: assembling applications with patterns, models,
frameworks and tools. In Companion of the 18th Annual {ACM} {SIGPLAN} Conference on Object-
Oriented Programming, Systems, Languages, and Applications, {OOPSLA} 2003, October 26-30, 2003,
Anaheim, CA, {USA}, pages 16–27, 2003.

[GSLC14] Susan P. Gregg, Rick Scharadin, Eric Legore, and Paul Clements. Lessons from AEGIS : Organizational
and Governance Aspects of a Major Product Line in a Multi-Program Environment. In Proceedings of
the 18th International Systems and Software Product Line Conference, SPLC, 2014.

[GVSZ14] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman. Lean ghtorrent:
Github data on demand. In 11th Working Conference on Mining Software Repositories, MSR 2014,
Proceedings, May 31 - June 1, 2014, Hyderabad, India, pages 384–387, 2014.

[GWTB12] Jianmei Guo, Yinglin Wang, Pablo Trinidad, and David Benavides. Expert Systems with Applications
Consistency maintenance for evolving feature models. Expert Systems With Applications, 39(5):4987–
4998, 2012.

[Hev07] Alan R. Hevner. The three cycle view of design science. Scandinavian J. Inf. Systems, 19(2):4, 2007.

[HF10] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation. Addison-Wesley Signature Series, 2010.

[HFG+10] Wolfgang Heider, Roman Froschauer, Paul Grünbacher, Rick Rabiser, and Deepak Dhungana.
Simulating evolution in model-based product line engineering. Information and Software Technology,
52(7):758–769, 2010.

[HGR10] Wolfgang Heider, Paul Grünbacher, and Rick Rabiser. Negotiation constellations in reactive product
line evolution. In Fourth International Workshop on Software Product Management, {IWSPM} 2010,
Sydney, NSW, Australia, September 27, 2010, pages 63–66, 2010.

[HH07] Scott A Hendrickson and André Van Der Hoek. Modeling Product Line Architectures through Change
Sets and Relationships. In 29th International Conference on Software Engineering (ICSE), pages 189–
198, 2007.

[HJZ16] Kim Herzig, Sascha Just, and Andreas Zeller. The impact of tangled code changes on defect prediction
models. Empirical Software Engineering, 21(2):303–336, 2016.

[HMO+08] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and Andreas Svendsen. Adding
standardized variability to domain specific languages. In Software Product Lines, 12th International
Conference, SPLC 2008, Limerick, Ireland, September 8-12, 2008, Proceedings, pages 139–148, 2008.

226

BIBLIOGRAPHY

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in information
systems research. MIS Quarterly, 28(1):75–105, 2004.

[Hol12] Hannes Holdschick. Challenges in the evolution of model-based software product lines in the automotive
domain. In 4th International Workshop on Feature-Oriented Software Development, {FOSD} ’12,
Dresden, Germany - September 24 - 25, 2012, pages 70–73, 2012.

[HPMFA+15] Ruben Heradio, Hector Perez-Morago, David Fernandez-Amoros, Francisco Javier Cabrerizo, and
Enrique Herrera-Viedma. A Bibliometric Analysis of 20 Years of Research on Software Product Lines.
Information and Software Technology, 2015.

[HR10] W. Heider and R. Rabiser. Tool Support for Evolution of Product Lines through Rapid Feedback from
Application Engineering. Proceedings of the 4th International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), pages 167–170, 2010.

[HRG12] Wolfgang Heider, Rick Rabiser, and Paul Grünbacher. Facilitating the evolution of products in product
line engineering by capturing and replaying configuration decisions. International Journal on Software
Tools for Technology Transfer, 14(5):613–630, 2012.

[HRGL12] Wolfgang Heider, Rick Rabiser, Paul Grünbacher, and Daniela Lettner. Using regression testing to
analyze the impact of changes to variability models on products. In 16th International Software Product
Line Conference, {SPLC} ’12, Salvador, Brazil - September 2-7, 2012, Volume 1, pages 196–205, 2012.

[HSB] Robert Hellebrand, Michael Schulze, and Martin Becker. A Branching Model for Variability-Affected
Cyber-Physical Systems.

[HVLG12] Wolfgang Heider, Michael Vierhauser, Daniela Lettner, and Paul Grünbacher. A Case Study on
the Evolution of a Component-based Product Line. In Proceedings of the Joint 10th Working
IEEE/IFIP Conference on Software Architecture and 6th European Conference on Software Architecture
(WICSA/ECSA), pages 1–10. Ieee, 2012.

[HZS+16] Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kästner, Olaf Leßenich, Martin Becker, and Sven
Apel. Preprocessor-based variability in open-source and industrial software systems: An empirical
study, volume 21. 2016.

[IKH14] Mari Inoki, Takayuki Kitagawa, and Shinichi Honiden. Application of requirements prioritization
decision rules in software product line evolution. In 5th {IEEE} International Workshop on
Requirements Prioritization and Communication, RePriCo 2014, Karlskrona, Sweden, August 26, 2014,
pages 1–10, 2014.

[IMY+16] Takahiro Iida, Masahiro Matsubara, Kentaro Yoshimura, Hideyuki Kojima, and Kimio Nishino. PLE
for automotive braking system with management of impacts from equipment interactions. Proceedings
of the 20th International Systems and Software Product Line Conference on - SPLC ’16, pages 232–241,
2016.

[JB09] Hans Peter Jepsen and Danilo Beuche. Running a software product line: standing still is going
backwards. In Software Product Lines, 13th International Conference, {SPLC} 2009, San Francisco,
California, USA, August 24-28, 2009, Proceedings, pages 101–110, 2009.

[JBAC15] Wenbin Ji, Thorsten Berger, Michal Antkiewicz, and Krzysztof Czarnecki. Maintaining feature
traceability with embedded annotations. In Proceedings of the 19th International Conference on
Software Product Line, {SPLC} 2015, Nashville, TN, USA, July 20-24, 2015, pages 61–70, 2015.

[Jen07] P Jensen. Experiences with product line development of multi-discipline analysis software at overwatch
textron systems. In 11th International Software Product Line Conference, SPLC 2007, pages 35–43,
Overwatch Textron Systems, 2007.

227

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[JF88] Ralph E Johnson and Brian Foote. Designing reusable classes. Journal of object-oriented programming,
1(2):22–35, 1988.

[JP14] Paul Johannesson and Erik Perjons. An Introduction to Design Science. Springer, 2014.

[JRG+12] Markus Jahn, Rick Rabiser, Paul Grünbacher, Markus Löberbauer, Reinhard Wolfinger, and Hanspeter
Mössenböck. Supporting Model Maintenance in Component-based Product Lines. In 2012 Joint
Working {IEEE/IFIP} Conference on Software Architecture and European Conference on Software
Architecture, {WICSA/ECSA} 2012, Helsinki, Finland, August 20-24, 2012, pages 21–30, 2012.

[JT11] Stan Jarzabek and Ha Duy Trung. Flexible generators for software reuse and evolution. In Proceedings
of the 33rd International Conference on Software Engineering, {ICSE} 2011, Waikiki, Honolulu , HI,
USA, May 21-28, 2011, pages 920–923, 2011.

[JZZZ08] Michael Jiang, Jing Zhang, Hong Zhao, and Yuanyuan Zhou. Maintaining software product lines - an
industrial practice. In 24th {IEEE} International Conference on Software Maintenance {(ICSM} 2008),
September 28 - October 4, 2008, Beijing, China, pages 444–447, 2008.

[Kan90] Kyo C Kang. Feature-oriented Domain Analysis (FODA): Feasibility Study ; Technical Report
CMU/SEI-90-TR-21 - ESD-90-TR-222. Software Engineering Inst., Carnegie Mellon Univ., 1990.

[KB12] Anil Kumar and Bernd Bruegge. Issue-based variability management. Information and Software
Technology, 54(9):933–950, 2012.

[KB13] Anil Kumar and Bernd Brügge. A mixed-method approach for the empirical evaluation of the issue-
based variability modeling. Journal of Systems and Software, 86(7):1831–1849, 2013.

[KC05] Chang Hwan Peter Kim and Krzysztof Czarnecki. Synchronizing Cardinality-Based Feature Models
and Their Specializations. In Model Driven Architecture - Foundations and Applications, First European
Conference, {ECMDA-FA} 2005, Nuremberg, Germany, November 7-10, 2005, Proceedings, pages 331–
348, 2005.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing {S}ystematic {L}iterature
{R}eviews in {S}oftware {E}ngineering. Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

[KC13] Charles Krueger and Paul Clements. Systems and Software Product Line Engineering. Encyclopedia of
Software Engineering, 2013.

[KDB+15a] Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe, Leif Singer, and Daniel M. German. Open
source-style collaborative development practices in commercial projects using GitHub. Proceedings
- International Conference on Software Engineering, 1:574–585, 2015.

[KDB+15b] Eirini Kalliamvakou, Daniela E. Damian, Kelly Blincoe, Leif Singer, and Daniel M. Germán.
Open source-style collaborative development practices in commercial projects using github. In 37th
IEEE/ACM International Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,
2015, Volume 1, pages 574–585, 2015.

[KG09] Mahvish Khurum and Tony Gorschek. A systematic review of domain analysis solutions for product
lines. Journal of Systems and Software, 82(12):1982–2003, 2009.

[KH12] Michael Kircher and Peter Hofman. Combining systematic reuse with Agile development. Proceedings
of the 16th International Software Product Line Conference on - SPLC ’12 -volume 1, 1:215, 2012.

[KII13] T Kanda, T Ishio, and K Inoue. Extraction of product evolution tree from source code of product
variants. In 17th International Software Product Line Conference, SPLC 2013, pages 141–150, Graduate
School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-
0871, Japan, 2013.

228

BIBLIOGRAPHY

[KJK+06] Ronny Kolb, Isabel John, Jens Knodel, Dirk Muthig, Uwe Haury, and Gerald Meier. Experiences with
product line development of embedded systems at testo AG. Proceedings - 10th International Software
Product Line Conference, SPLC 2006, (01):172–181, 2006.

[Kla08] Holger Eichelberger Klaus Schmid. A Requirements-Based Taxonomy of Software Product Line
Evolution. Proceedings of the Third International ERCIM Symposium on Software Evolution, 8, 2008.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented Programming. In ECOOP, pages 220–242. 1997.

[KMNL06] Jens Knodel, Dirk Muthig, Matthias Naab, and Mikael Lindvall. Static evaluation of software
architectures. In 10th European Conference on Software Maintenance and Reengineering (CSMR 2006),
22-24 March 2006, Bari, Italy, pages 279–294, 2006.

[KR02] Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete guide to dimensional
modeling, 2nd Edition. Wiley, 2002.

[KR13] Reza Karimpour and Günther Ruhe. Bi-criteria genetic search for adding new features into an existing
product line. In 1st International Workshop on Combining Modelling and Search-Based Software
Engineering, CMSBSE at ICSE 2013, San Francisco, CA, USA, May 20, 2013, pages 34–38, 2013.

[Kru01] Charles W Krueger. Easing the Transition to Software Mass Customization. In Software Product-Family
Engineering, 4th International Workshop, {PFE} 2001, Bilbao, Spain, October 3-5, 2001, Revised
Papers, pages 282–293, 2001.

[Kru03] Charles W. Krueger. Towards a taxonomy for software product lines. In Software Product-Family
Engineering, 5th International Workshop, PFE 2003, Siena, Italy, November 4-6, 2003, Revised Papers,
pages 323–331, 2003.

[Kru06] Charles W. Krueger. New methods in software product line practice. Commun. ACM, 49(12):37–40,
2006.

[KS94] Maren Krone and Gregor Snelting. On the Inference of Configuration Structures from Source Code. In
Proceedings of the 16th International Conference on Software Engineering, Sorrento, Italy, May 16-21,
1994., pages 49–57, 1994.

[KSK08] George Kakarontzas, Ioannis Stamelos, and Panagiotis Katsaros. Product Line Variability with Elastic
Components and Test-Driven Development. In 2008 International Conferences on Computational
Intelligence for Modelling, Control and Automation {(CIMCA} 2008), Intelligent Agents, Web
Technologies and Internet Commerce {(IAWTIC} 2008), Innovation in Software Engineering {(ISE}
2008), 10-12 December, pages 146–151, 2008.

[KSL+13] Sandeep Krishnan, Chris Strasburg, Robyn R Lutz, Katerina Goseva-popstojanova, and Karin S
Dorman. Predicting failure-proneness in an evolving software product line. Information and Software
Technology, 55(8):1479–1495, 2013.

[KSLG11] Sandeep Krishnan, Chris Strasburg, Robyn R. Lutz, and Katerina Goseva-Popstojanova. Are change
metrics good predictors for an evolving software product line? In Proceedings of the 7th International
Conference on Predictive Models in Software Engineering, PROMISE 2011, Banff, Alberta, Canada,
September 20-21, 2011, page 7, 2011.

[KSS15] Michael Käßmeyer, Michael Schulze, and Markus Schurius. A process to support a systematic
change impact analysis of variability and safety in automotive functions. In Proceedings of the 19th
International Conference on Software Product Line, {SPLC} 2015, Nashville, TN, USA, July 20-24,
2015, pages 235–244, 2015.

229

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[KST+14] R Kodama, J Shimabukuro, Y Takagi, S Koizumi, and S Tano. Experiences with commonality control
procedures to develop clinical instrument system. 18th International Software Product Line Conference,
SPLC 2014, 1:254–263, 2014.

[KTvM+99] Barbara A Kitchenham, Guilherme H Travassos, Anneliese von Mayrhauser, Frank Niessink, Norman F
Schneidewind, Janice Singer, Shingo Takada, Risto Vehvilainen, and Hongji Yang. Towards an
Ontology of Software Maintenance. Journal of Software Maintenance, 11(6):365–389, 1999.

[LBd+13] Luanna Lopes Lobato, Thiago Jabur Bittar, Paulo Anselmo da Mota Silveira Neto, Ivan do Carmo
Machado, Eduardo Santana de Almeida, and Silvio Romero de Lemos Meira. Risk Management in
Software Product Line Engineering: a Mapping Study. International Journal of Software Engineering
and Knowledge Engineering, 23(4):523–558, 2013.

[LC13] Miguel A Laguna and Yania Crespo. A systematic mapping study on software product line evolution:
From legacy system reengineering to product line refactoring. Sci. Comput. Program., 78(8):1010–1034,
2013.

[LDSL07] Jing Liu, Josh Dehlinger, Hongyu Sun, and Robyn R Lutz. State-Based Modeling to Support
the Evolution and Maintenance of Safety-Critical Software Product Lines. In 14th Annual {IEEE}
International Conference and Workshop on Engineering of Computer Based Systems {(ECBS} 2007),
26-29 March 2007, Tucson, Arizona, {USA}, pages 596–608, 2007.

[LG15] Daniela Lettner and Paul Grünbacher. Using Feature Feeds to Improve Developer Awareness in Software
Ecosystem Evolution. Proceedings of the 9th International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS ’15), pages 11–18, 2015.

[LHIE17] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. A systematic mapping study of
information visualization for software product line engineering, nov 2017.

[Liv11] Steve Livengood. Issues in software product line evolution: complex changes in variability models. In
Proceedings of the 2nd International Workshop on Product Line Approaches in Software Engineering,
{PLEASE} 2011, Waikiki, Honolulu, HI, USA, May 22-23, 2011, pages 6–9, 2011.

[LLSG12] Sascha Lity, Malte Lochau, Ina Schaefer, and Ursula Goltz. Delta-oriented model-based {SPL}
regression testing. In Proceedings of the Third International Workshop on Product LinE Approaches
in Software Engineering, {PLEASE} 2012, Zurich, Switzerland, June 4, 2012, pages 53–56, 2012.

[LP07] Felix Loesch and Erhard Ploedereder. Restructuring Variability in Software Product Lines using Concept
Analysis of Product Configurations. In 11th European Conference on Software Maintenance and
Reengineering, Software Evolution in Complex Software Intensive Systems, {CSMR} 2007, 21-23 March
2007, Amsterdam, The Netherlands, pages 159–170, 2007.

[LRZJ04] Neil Loughran, Awais Rashid, Weishan Zhang, and Stan Jarzabek. Supporting Product Line Evolution
With Framed Aspects. In Proceedings of the 3rd workshop on Aspects, components, and patterns for
infrastructure software (ACP4IS), pages 22–26, 2004.

[MAI12] Sonia Montagud, Silvia Abrahão, and Emilio Insfrán. A systematic review of quality attributes and
measures for software product lines. Software Quality Journal, 20(3-4):425–486, 2012.

[MARC13] Alexandr Murashkin, Michal Antkiewicz, Derek Rayside, and Krzysztof Czarnecki. Visualization and
exploration of optimal variants in product line engineering. In 17th International Software Product Line
Conference, {SPLC} 2013, Tokyo, Japan - August 26 - 30, 2013, pages 111–115, 2013.

[MBKM08] Thilo Mende, Felix Beckwermert, Rainer Koschke, and Gerald Meier. Supporting the Grow-and-Prune
Model in Software Product Lines Evolution Using Clone Detection. In 12th European Conference on
Software Maintenance and Reengineering, {CSMR} 2008, April 1-4, 2008, Athens, Greece, pages 163–
172, 2008.

230

BIBLIOGRAPHY

[Mcg03] John D Mcgregor. The Evolution of Product Line Assets. Technical Report. Carnegie Mellon University,
Software Engineering Institute, 10(CMU/SEI-2003-TR-005), 2003.

[McG07] John McGregor. CM - configuration change management. Journal of Object Technology, 6(1):7–15,
2007.

[MCNY07] Mikyeong Moon, Heung Seok Chae, Taewoo Nam, and Keunhyuk Yeom. A metamodeling approach
to tracing variability between requirements and architecture in software product lines. In Seventh
International Conference on Computer and Information Technology (CIT 2007), October 16-19, 2007,
University of Aizu, Fukushima, Japan, pages 927–933, 2007.

[McV15] Larry McVoy. Preliminary product line support in BitKeeper. In Proceedings of the 19th International
Conference on Software Product Line, {SPLC} 2015, Nashville, TN, USA, July 20-24, 2015, pages 245–
252, 2015.

[MD15] Leticia Montalvillo and Oscar Díaz. Tuning github for SPL development: branching models &
repository operations for product engineers. In Proceedings of the 19th International Conference on
Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, pages 111–120, 2015.

[MD16] Leticia Montalvillo and Oscar Díaz. Requirement-driven Evolution in Software Product Lines: A
Systematic Mapping Study. The Journal of Systems and Software, 2016.

[MDA17] Leticia Montalvillo, Oscar Díaz, and Maider Azanza. Visualizing product customization efforts for
spotting SPL reuse opportunities. In Proceedings of the 21st International Systems and Software Product
Line Conference, SPLC 2017, Volume B, Sevilla, Spain, September 25-29, 2017, pages 73–80, 2017.

[mer] Ward Cunningham. Integration Hell. http://c2.com/cgi/wiki?IntegrationHell.
Accessed: 2018-03-26.

[MKR94] K.R.S. Murthy, Anantha Kadur, and Padma Rao. A holistic approach to product marketability
measurements-the pmm approach. In Engineering Management Conference, 1994. ’Management in
Transition: Engineering a Changing World’, Proceedings of the 1994 IEEE International, pages 323–
329, 1994.

[MMCdA14] Ivan Do Carmo Machado, John D McGregor, Yguaratã Cerqueira Cavalcanti, and Eduardo Santana
de Almeida. On strategies for testing software product lines: A systematic literature review. Information
and Software Technology, 56(10):1183–1199, oct 2014.

[MNSD17] Shane McKee, Nicholas Nelson, Anita Sarma, and Danny Dig. Software practitioner perspectives on
merge conflicts and resolutions. In 2017 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2017, Shanghai, China, September 17-22, 2017, pages 467–478, 2017.

[MPC01] Kieran Mathieson, Eileen Peacock, and Wynne W. Chin. Extending the technology acceptance model:
the influence of perceived user resources. DATA BASE, 32(3):86–112, 2001.

[MPK12] Daniel Merschen, Julian Pott, and Stefan Kowalewski. Integration and Analysis of Design Artefacts
in Embedded Software Development. In 36th Annual {IEEE} Computer Software and Applications
Conference Workshops, {COMPSAC} 2012, Izmir, Turkey, July 16-20, 2012, pages 503–508, 2012.

[MPT07] Jose-Norberto Mazón, Jesús Pardillo, and Juan Trujillo. A model-driven goal-oriented requirement
engineering approach for data warehouses. In Advances in Conceptual Modeling - Foundations and
Applications, ER 2007 Workshops CMLSA, FP-UML, ONISW, QoIS, RIGiM,SeCoGIS, Auckland, New
Zealand, November 5-9, 2007, Proceedings, pages 255–264, 2007.

[MV09] Radoslav Menkyna and Valentino Vranic. Aspect-Oriented Change Realization Based on Multi-
Paradigm Design with Feature Modeling. In Advances in Software Engineering Techniques - 4th {IFIP}
{TC} 2 Central and East European Conference on Software Engineering Techniques, {CEE-SET} 2009,
Krakow, Poland, October 12-14, 2009. Revised Selected Papers, pages 40–53, 2009.

231

http://c2.com/cgi/wiki?IntegrationHell

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[MW11] Bartosz Michalik and Danny Weyns. Towards a Solution for Change Impact Analysis of Software
Product Line Products. In 9th Working {IEEE/IFIP} Conference on Software Architecture, {WICSA}
2011, Boulder, Colorado, USA, June 20-24, 2011, pages 290–293, 2011.

[MWB11] Bartosz Michalik, Danny Weyns, and Wim Van Betsbrugge. On the problems with evolving Egemin’s
software product line. In Proceedings of the 2nd International Workshop on Product Line Approaches
in Software Engineering, {PLEASE} 2011, Waikiki, Honolulu, HI, USA, May 22-23, 2011, pages 15–19,
2011.

[MYBM91] Allan MacLean, Richard M Young, Victoria M E Bellotti, and Thomas P Moran. Questions, Options,
and Criteria: Elements of Design Space Analysis. Hum.-Comput. Interact., 6(3):201–250, 1991.

[NNK16] Motoi Nagamine, Tsuyoshi Nakajima, and Noriyoshi Kuno. A case study of applying software product
line engineering to the air conditioner domain. Proceedings of the 20th International Systems and
Software Product Line Conference on - SPLC ’16, pages 220–226, 2016.

[NRG08] Muhammad Asim Noor, Rick Rabiser, and Paul Grünbacher. Agile product line planning: A
collaborative approach and a case study. Journal of Systems and Software, 81(6):868–882, 2008.

[NSM17] Renato Novais, José Amancio Santos, and Manoel Mendonça. Experimentally Assessing the
Combination of Multiple Visualization Strategies for Software Evolution Analysis. Journal of Systems
and Software, 128:56–71, 2017.

[NTM+13] Renato Lima Novais, André Torres, Thiago Souto Mendes, Manoel G. Mendonça, and Nico Zazworka.
Software evolution visualization: A systematic mapping study. Information & Software Technology,
55(11):1860–1883, 2013.

[PBD+12] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and Stefan Kowalewski.
Model-driven support for product line evolution on feature level. Journal of Systems and Software,
85(10):2261–2274, oct 2012.

[PBvdL05a] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, 2005.

[PBvdL05b] Klaus Pohl, Günter Böckle, and Frank J van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[PCF14] J A Pereira, K Constantino, and E Figueiredo. A systematic literature review of software product line
management tools. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 8919:73–89, 2014.

[PDŠ12] Paulius Paskevicius, Robertas Damasevicius, and Vytautas Štuikys. Change impact analysis of feature
models. Communications in Computer and Information Science, 319 CCIS:108–122, 2012.

[PFMM08a] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic Mapping Studies
in Software Engineering. In Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, EASE’08, pages 68–77, Swinton, UK, UK, 2008. British
Computer Society.

[PFMM08b] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic Mapping Studies
in Software Engineering. 12th International Conference on Evaluation and Assessment in Software
Engineering, {EASE} 2008, University of Bari, Italy, 26-27 June 2008, 2008.

[PGT+13] Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof Czarnecki, Andrzej Wasowski, and Paulo
Borba. Coevolution of variability models and related artifacts: A case study from the Linux kernel.
ACM International Conference Proceeding Series, pages 91–100, 2013.

232

BIBLIOGRAPHY

[PHS11] Christian Pichler, Christian Huemer, and Michael Strommer. Evolution patterns for business document
models. In Software Product Lines - 15th International Conference, {SPLC} 2011, Munich, Germany,
August 22-26, 2011. Workshop Proceedings (Volume 2), page 21, 2011.

[Pla] {Planning Game} Agile Practice. http://c2.com/cgi/wiki?PlanningGame.
Lastvisited:2015-12-11. Accessed: 2018-02-23.

[PO97] T Troy Pearse and Paul W Oman. Experiences Developing and Maintaining Software in a Multi-
Platform Environment. In ICSM, pages 270–277, 1997.

[PPF+14] Juliana Padilha, Juliana Alves Pereira, Eduardo Figueiredo, Jussara M Almeida, Alessandro Garcia,
and Cláudio Sant’Anna. On the Effectiveness of Concern Metrics to Detect Code Smells: An
Empirical Study. In Proceedings of the 26th International Conference on Advanced Information Systems
Engineering (CAiSE), pages 656–671, 2014.

[Pre97] Christian Prehofer. Feature-Oriented Programming: {A} Fresh Look at Objects. In ECOOP, pages
419–443, 1997.

[PSW11] Shaun Phillips, Jonathan Sillito, and Rob Walker. Branching and Merging: An Investigation into Current
Version Control Practices. Proceedings of the 4th International Workshop on Cooperative and Human
Aspects of Software Engineering SE - CHASE ’11, pages 9–15, 2011.

[PTS+16] Tristan Pfofe, Thomas Thüm, Sandro Schulze, Wolfram Fenske, and Ina Schaefer. Synchronizing
software variants with variantsync. Proceedings of the 20th International Systems and Software Product
Line Conference on - SPLC ’16, pages 329–332, 2016.

[pur] Pure::variants. variant management tool from pure-systems company. http://www.
pure-systems.com/products/pure-variants-9.html. Accessed: 2018-02-23.

[PVK15] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conducting systematic mapping
studies in software engineering: An update. Information and Software Technology, 64:1–18, 2015.

[PW09] Kai Petersen and Claes Wohlin. Context in industrial software engineering research. 2009 3rd
International Symposium on Empirical Software Engineering and Measurement, ESEM 2009, pages
401–404, 2009.

[PYZ11] Xin Peng, Yijun Yu, and Wenyun Zhao. Analyzing Evolution of Variability in a Software Product Line:
From Contexts and Requirements to Features. Information and Software Technology, 53(7):707–721,
2011.

[QPB+14] Clément Quinton, Andreas Pleuss, Daniel Le Berre, Laurence Duchien, and Goetz Botterweck.
Consistency checking for the evolution of cardinality-based feature models. Proceedings of the 18th
International Software Product Line Conference (SPLC), pages 122–131, 2014.

[RB08] Márcio Ribeiro and Paulo Borba. Recommending Refactorings when Restructuring Variabilities in
Software Product Lines. In Proceedings of the 2Nd Workshop on Refactoring Tools, WRT ’08, pages
8:1—-8:4, New York, NY, USA, 2008. ACM.

[RBK14] Márcio Ribeiro, Paulo Borba, and Christian Kästner. Feature maintenance with emergent interfaces.
Proceedings of the 36th International Conference on Software Engineering - ICSE 2014, pages 989–
1000, 2014.

[RCC13] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Managing Cloned Variants: A Framework and
Experience. Proceedings of the 17th International Software Product Line Conference (SPLC), pages
101–110, 2013.

233

http://www.pure-systems.com/products/pure-variants-9.html
http://www.pure-systems.com/products/pure-variants-9.html

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[RCC15] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Cloned product variants: from ad-hoc to
managed software product lines. STTT, 17(5):627–646, 2015.

[RDG+07] R Rabiser, D Dhungana, P Grunbacher, K Lehner, and C Federspiel. Involving Non-Technicians in
Product Derivation and Requirements Engineering: A Tool Suite for Product Line Engineering. In
Requirements Engineering Conference, 2007. RE ’07. 15th IEEE International, pages 367–368, oct
2007.

[RKBC12] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. Managing forked product
variants. In 16th International Software Product Line Conference, SPLC ’12, Salvador, Brazil -
September 2-7, 2012, Volume 1, pages 156–160, 2012.

[RR03] Claudio Riva and Christian Del Rosso. Experiences with software product family evolution. pages
161–169, 2003.

[RRSW] Bernhard Rumpe, Jan Oliver Ringert, Christoph Schulze, and Michael Von Wenckstern. Behavioral
Compatibility of Simulink Models for Product Line Maintenance and Evolution. Proceedings of the
19th International Conference on Software Product Line (SPLC), pages 141–150.

[RUQ+13] Daniel Romero, Simon Urli, Clément Quinton, Mireille Blay-Fornarino, Philippe Collet, Laurence
Duchien, and Sébastien Mosser. SPLEMMA: A Generic Framework for Controlled-Evolution of
Software Product Lines. Proceedings of the 17th International Software Product Line Conference co-
located workshops (SPLC), 2013:59, 2013.

[Sav14] Juha Savolainen. Past, present and future of product line engineering in industry: reflecting on 15
years of variability management in real projects. In The Eighth International Workshop on Variability
Modelling of Software-intensive Systems, VaMoS ’14, Sophia Antipolis, France, January 22-24, 2014,
page 1:1, 2014.

[SB99] Mikael Svahnberg and Jan Bosch. Evolution in Software Product Lines: Two Cases. Journal of Software
Maintenance, 11(6):391–422, 1999.

[SB00] Mikael Svahnberg and Jan Bosch. Issues Concerning Variability in Software Product Lines.
International Workshop on Software Architectures for Product Families (IW-SAPF)., pages 146–157,
2000.

[SBB+10] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tanzarella. Delta-oriented
programming of software product lines. In Software Product Lines: Going Beyond - 14th International
Conference, SPLC 2010, Jeju Island, South Korea, September 13-17, 2010. Proceedings, pages 77–91,
2010.

[SC11] Ricardo J Sales and Roberta Coelho. Preserving the exception handling design rules in software product
line context: A practical approach. In Proceedings of the 5th Latin-American Symposium on Dependable
Computing Workshops (LADCW), pages 9–16, 2011.

[Sch06a] H Schackmann H.; Lichter. A Cost-Based Approach to Software Product Line Management.
International Workshop on Software Product Management (IWSPM), pages 2–7, 2006.

[Sch06b] Kathrin D Scheidemann. Optimizing the selection of representative configurations in verification
of evolving product lines of distributed embedded systems. 1Proceedings of the 10th International
Software Product Line Conference (SPLC), 2006.

[SdOdA15] Alcemir Rodrigues Santos, Raphael Pereira de Oliveira, and Eduardo Santana de Almeida. Strategies
for Consistency Checking on Software Product Lines: A Mapping Study. In Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, EASE ’15, pages
5:1—-5:14, New York, NY, USA, 2015. ACM.

234

BIBLIOGRAPHY

[SEB] Sebok. maintainability. http://sebokwiki.org/wiki/Reliability,
{_}Availability,{_}and{_}Maintainability. Accessed: 2018-02-23.

[sem] Martin Fowler. Semantic conflict. https://martinfowler.com/bliki/
SemanticConflict.html/. Accessed: 2018-03-26.

[Sha99] David C Sharp. Exploiting object technology to support product variability. Proceedings of the 18th
Digital Avionics Systems Conference, 2, 1999.

[SHA12] Christoph Seidl, Florian Heidenreich, and Uwe Assmann. Co-evolution of Models and Feature Mapping
in Software Product Lines. In Proceedings of the 16th International Software Product Line Conference
(SPLC), pages 76–85, 2012.

[Sin98] Janice Singer. Practices of software maintenance. In 1998 International Conference on Software
Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16-19, 1998, pages 139–145, 1998.

[SK01] Juha Savolainen and Juha Kuusela. Violatility analysis framework for product lines. Proceedings of the
2001 symposium on Software reusability: putting software reuse in context, 26:133–141, 2001.

[SK08] Juha Savolainen and Juha Kuusela. Scheduling Product Line Features for Effective Roadmapping.
Proceedings of the 5th Asia-Pacific Software Engineering Conference (APSEC), pages 195–202, 2008.

[SK14] Hamideh Sabouri and Ramtin Khosravi. Science of Computer Programming Reducing the verification
cost of evolving product families using static analysis techniques. Science of Computer Programming,
83:35–55, 2014.

[SLB13] Sandro Schulze, Malte Lochau, and Saskia Brunswig. Implementing Refactorings for FOP: Lessons
Learned and Challenges Ahead. In Proceedings of the 5th International Workshop on Feature-Oriented
Software Development, FOSD ’13, pages 33–40, New York, NY, USA, 2013. ACM.

[S.P] S.P.L.O.T. http://www.splot-research.org.

[SPP+13] Mathias Schubanz, Andreas Pleuss, Ligaj Pradhan, Goetz Botterweck, and Anil Kumar Thurimella.
Model-driven planning and monitoring of long-term software product line evolution. Proceedings of the
7th International Workshop on Variability Modelling of Software-intensive Systems (VaMoS), page 1,
2013.

[SPZ09] Liwei Shen, Xin Peng, and Wenyun Zhao. A Comprehensive Feature-Oriented Traceability Model for
Software Product Line Development. Australian Software Engineering Conference (ASWEC), pages
210–219, 2009.

[SPZZ10] Liwei Shen, Xin Peng, Jiayi Zhu, and Wenyun Zhao. Synchronized Architecture Evolution in Software
Product Line Using Bidirectional Transformation. Proceedings of the 34th Annual Computer Software
and Applications Conference, pages 389–394, 2010.

[SRG11] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A Comparison of Decision Modeling Approaches
in Product Lines. In Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive
Systems, VaMoS ’11, pages 119–126, New York, NY, USA, 2011. ACM.

[SS08] Nita Sarang and Mukund A Sanglikar. An Analysis of Effort Variance in Software Maintenance Projects.
2008.

[SSRS16] Sandro Schulze, Michael Schulze, Uwe Ryssel, and Christoph Seidl. Aligning Coevolving Artifacts
Between Software Product Lines and Products. Proceedings of the Tenth International Workshop on
Variability Modelling of Software-intensive Systems - VaMoS ’16, pages 9–16, 2016.

235

https://martinfowler.com/bliki/SemanticConflict.html/
https://martinfowler.com/bliki/SemanticConflict.html/

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[SSTS14] Reimar Schröter, Norbert Siegmund, Thomas Thüm, and Gunter Saake. Feature-context interfaces:
tailored programming interfaces for software product lines. In Proceedings of the 18th International
Software Product Line Conference (SPLC), pages 102–111, 2014.

[Sta04] Mark Staples. Change control for product line software engineering. In 11th Asia-Pacific Software
Engineering Conference (APSEC 2004), 30 November - 3 December 2004, Busan, Korea, pages 572–
573, 2004.

[STKS12] Sandro Schulze, Thomas Thüm, Martin Kuhlemann, and Gunter Saake. Variant-preserving Refactoring
in Feature-oriented Software Product Lines. In Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems, VaMoS ’12, pages 73–81, New York, NY, USA,
2012. ACM.

[SV02] K Schmid and M Verlage. The economic impact of product line adoption and evolution. IEEE Software,
19(4), 2002.

[Swa76] E Burton Swanson. The Dimensions of Maintenance. In Proceedings of the 2Nd International
Conference on Software Engineering, ICSE ’76, pages 492–497, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[Tab04] Louis J M Taborda. Generalized Release Planning for Product Line Architectures. Proceedings of the
3rd International Conference on Software Product Lines (SPLC), pages 238–254, 2004.

[TABG15] Leopoldo Teixeira, Vander Alves, Paulo Borba, and Rohit Gheyi. A product line of theories for reasoning
about safe evolution of product lines. In Proceedings of the 19th International Conference on Software
Product Line, {SPLC} 2015, Nashville, TN, USA, July 20-24, 2015, pages 161–170, 2015.

[TAK+14] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A Classification and
Survey of Analysis Strategies for Software Product Lines. ACM Computing Surveys (CSUR), 47(1):1–
45, 2014.

[TB07] Anil Kumar Thurimella and Bernd Bruegge. Evolution in product line requirements engineering: A
rationale management approach. Proceedings of the 15th IEEE International Requirements Engineering
Conference (RE), pages 254–257, 2007.

[TBC08] Anil Kumar Thurimella, Bernd Bruegge, and Oliver Creighton. Identifying and exploiting the
similarities between rationale management and variability management. Proceedings of the 12th
International Software Product Line Conference (SPLC), pages 99–108, 2008.

[TBG15] Leopoldo Teixeira, Paulo Borba, and Rohit Gheyi. Safe evolution of product populations and multi
product lines. In Proceedings of the 19th International Conference on Software Product Line, SPLC
2015, Nashville, TN, USA, July 20-24, 2015, pages 171–175, 2015.

[TBK09] Thomas Thüm, Don Batory, and Christian Kastner. Reasoning about edits to feature models.
Proceedings of the 31st International Conference on Software Engineering (ICSE), pages 254–264,
2009.

[TBM+12] Christian Tischer, Birgit Boss, Andreas Müller, Andreas Thums, Klaus Schmid, Christian Tischer, Birgit
Boss, Andreas Mueller, and Andreas Thums. Developing Long-Term Stable Product Line Architectures.
Proceedings of the 16th International Software Product Line Conference (SPLC), pages 86–95, 2012.

[tBMP11] Maurice H ter Beek, Henry Muccini, and Patrizio Pelliccione. Guaranteeing Correct Evolution of
Software Product Lines: Setting Up the Problem. In Software Engineering for Resilient Systems - Third
International Workshop, {SERENE} 2011, Geneva, Switzerland, September 29-30, 2011. Proceedings,
pages 100–105, 2011.

236

BIBLIOGRAPHY

[tBMP12] Maurice H ter Beek, Henry Muccini, and Patrizio Pelliccione. Assume-Guarantee Testing of Evolving
Software Product Line Architectures. In Software Engineering for Resilient Systems - 4th International
Workshop, {SERENE} 2012, Pisa, Italy, September 27-28, 2012. Proceedings, pages 91–105, 2012.

[TDB17] Vasil L. Tenev, Slawomir Duszynski, and Martin Becker. Variant analysis: Set-based similarity
visualization for cloned software systems. In Proceedings of the 21st International Systems and Software
Product Line Conference, SPLC 2017, Volume B, Sevilla, Spain, September 25-29, 2017, pages 22–27,
2017.

[TDR+11] Leonardo P Tizzei, Marcelo Dias, Cecília M F Rubira, Alessandro Garcia, and Jaejoon Lee. Components
meet aspects : Assessing design stability of a software product line. Information and Software
Technology, 53(2):121–136, 2011.

[Tes07] Aleksandra Tesanovic. Evolving embedded product lines: opportunities for aspects. In Proceedings
of the 6th workshop on Aspects, Components, and Patterns for Infrastructure Software, ACP4IS 2007,
Vancouver, British Columbia, Canada, March 12, 2007, page 10, 2007.

[TFC+09] Yasuaki Takebe, Naohiko Fukaya, Masaki Chikahisa, Toshihide Hanawa, and Osamu Shirai.
Experiences with software product line engineering in product development oriented organization.
Proceedings of the 13th International Software Product Line Conference, pages 275–283, 2009.

[TGAS14] Dan Tofan, Matthias Galster, Paris Avgeriou, and Wes Schuitema. Past and future of software
architectural decisions ? A systematic mapping study. Information and Software Technology, 56(8):850–
872, 2014.

[tM10] Adriaan ter Mors. The world according to MARP. PhD thesis, Delft University of Technology,
Netherlands, 2010.

[TM14] Le Minh Sang Tran and Fabio Massacci. An Approach for Decision Support on the Uncertainty in
Feature Model Evolution. In {IEEE} 22nd International Requirements Engineering Conference, {RE}
2014, Karlskrona, Sweden, August 25-29, 2014, pages 93–102, 2014.

[TMMK11] C Tischer, A Müller, T Mandl, and R Krause. Experiences from a large scale software product line
merger in the automotive domain. In 15th International Software Product Line Conference, SPLC 2011,
pages 267–276, Robert Bosch GmbH, Diesel Gasoline Systems, Postfach 30 02 20, 70442 Stuttgart,
Germany, 2011.

[TMN08] Cheng Thao Cheng Thao, E.V. Munson, and T.N. Nguyen. Software Configuration Management for
Product Derivation in Software Product Families. ECBS, 2008.

[tru] What is your branching model. http://paulhammant.com/2013/12/04/what_is_your_branching_model/.

[TSSPL09] Reinhard Tartler, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel Lohmann. Dead or Alive:
Finding Zombie Features in the Linux Kernel. In Proceedings of the First International Workshop on
Feature-Oriented Software Development, FOSD ’09, pages 81–86, New York, NY, USA, 2009. ACM.

[UBBF+15] Simon Urli, Alexandre Bergel, Mireille Blay-Fornarino, Philippe Collet, and Sebastien Mosser. A visual
support for decomposing complex feature models. 2015 IEEE 3rd Working Conference on Software
Visualization, VISSOFT 2015 - Proceedings, pages 76–85, 2015.

[uni] Unified diff format explained by Guido van van Rossum. http://www.artima.com/weblogs/
viewpost.jsp?thread=164293. Accessed: 2018-02-23.

[VDJ10] Karina Villela, Jörg Dörr, and Isabel John. Evaluation of a method for proactively managing the evolving
scope of a software product line. International Working Conference on Requirements Engineering.
Foundation for Software Quality (REFSQ), pages 113–127, 2010.

237

http://www.artima.com/weblogs/viewpost.jsp?thread=164293
http://www.artima.com/weblogs/viewpost.jsp?thread=164293

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

[vdLSR07] Frank van der Linden, Klaus Schmid, and Eelco Rommes. Software product lines in action - the best
industrial practice in product line engineering. Springer, 2007.

[VFAC14] G Vale, E Figueiredo, R Abilio, and H Costa. Bad Smells in Software Product Lines: A Systematic
Review. In Software Components, Architectures and Reuse (SBCARS), 2014 Eighth Brazilian
Symposium on, pages 84–94, sep 2014.

[vGB02] Jilles van Gurp and Jan Bosch. Design Erosion: Problems and Causes. J. Syst. Softw., 61(2):105–119,
2002.

[VGH+12] Michael Vierhauser, Paul Grünbacher, Wolfgang Heider, Gerald Holl, and Daniela Lettner. Applying a
Consistency Checking Framework for Heterogeneous Models and Artifacts in Industrial Product Lines.
In Proceedings of the 15th International Conference on Model Driven Engineering Languages and
Systems (MoDELS), pages 531–545, 2012.

[vO02] Rob van Ommering. Building product populations with software components. In International
Conference on Software Engineering (ICSE)., 2002.

[VPS+12] Alexandre Vianna, Felipe Pinto, Demóstenes Sena, Uirá Kulezsa, Roberta Coelho, Jadson Santos,
Jalerson Lima, and Gleydson Lima. Squid: An Extensible Infrastructure for Analyzing Software Product
Line Implementations. In Proceedings of the 16th International Software Product Line Conference
(SPLC)- Volume 2, volume II, pages 209–216, 2012.

[VRG14] Michael Vierhauser, Rick Rabiser, and Paul Grünbacher. A Requirements Monitoring Infrastructure for
Very-Large-Scale Software Systems. In Camille Salinesi and Inge van de Weerd, editors, Requirements
Engineering: Foundation for Software Quality, volume 8396 of Lecture Notes in Computer Science,
pages 88–94. Springer International Publishing, 2014.

[VV11] Markus Voelter and Eelco Visser. Product Line Engineering Using Domain-Specific Languages. In
Proceedings of the 2011 15th International Software Product Line Conference, SPLC ’11, pages 70–79,
Washington, DC, USA, 2011. IEEE Computer Society.

[WD15] Roel Wieringa and Maya Daneva. Six strategies for generalizing software engineering theories. Science
of Computer Programming, 101:136 – 152, 2015. Towards general theories of software engineering.

[Wei08] David M Weiss. The Product Line Hall of Fame. In Software Product Lines, 12th International
Conference, {SPLC} 2008, Limerick, Ireland, September 8-12, 2008, Proceedings, page 395, 2008.

[Wie14] Roel J. Wieringa. Research Goals and Research Questions, pages 13–23. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014.

[WMHB11] Danny Weyns, Bartosz Michalik, Alexander Helleboogh, and Nelis Boucke. An Architectural Approach
to Support Online Updates of Software Product Lines. In Proceedings of the 2011 Ninth Working
IEEE/IFIP Conference on Software Architecture, WICSA ’11, pages 204–213, Washington, DC, USA,
2011. IEEE Computer Society.

[WMMR05] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Requirements Engineering Paper
Classification and Evaluation Criteria: A Proposal and a Discussion. Requir. Eng., 11(1):102–107,
2005.

[WRdMSN+13] Claes Wohlin, Per Runeson, Paulo Anselmo da Mota Silveira Neto, Emelie Engström, Ivan
do Carmo Machado, and Eduardo Santana de Almeida. On the reliability of mapping studies in software
engineering. Journal of Systems and Software, 86(10):2594–2610, 2013.

[WRK09] Krzysztof Wnuk, Björn Regnell, and Lena Karlsson. What happened to our features? Visualization and
understanding of scope change dynamics in a large-scale industrial setting. Proceedings of the IEEE
International Conference on Requirements Engineering, pages 89–98, 2009.

238

BIBLIOGRAPHY

[WS02a] Charlene (Chuck) Walrad and Darrel Strom. The importance of branching models in SCM. IEEE
Computer, 35(9):31–38, 2002.

[WS02b] Chuck Walrad and Darrel Strom. The Importance of Branching Models in {SCM}. Computer, 35(9):31–
38, 2002.

[YCM93] S S Yau, J S Collofello, and T M MacGregor. Software Engineering Metrics I. chapter Ripple Eff, pages
71–82. McGraw-Hill, Inc., New York, NY, USA, 1993.

[YGW12] Dongjin Yu, Peng Geng, and Wei Wu. Constructing Traceability between Features and Requirements
for Software Product Line Engineering. Proceedings of the 9th Asia-Pacific Software Engineering
Conference (APSEC), pages 27–34, 2012.

[YM12] Amir Reza Yazdanshenas and Leon Moonen. Fine-Grained Change Impact Analysis for Component-
Based Product Families. Proceedings of the International Conference on Software Maintenance (ICSM),
(5):119–128, 2012.

[ZBP+13] Bo Zhang, Martin Becker, Thomas Patzke, Krzysztof Sierszecki, and Juha Erik Savolainen. Variability
Evolution and Erosion in Industrial Product Lines: A Case Study. In Proceedings of the 17th
International Software Product Line Conference (SPLC), pages 168–177, 2013.

239

Glossary

• Application Engineering (AE) is the process of developing a specific
product for the needs of a particular customer (or other stakeholder). It
corresponds to the process of single application development in traditional
software engineering, but reuses artifacts from domain engineering where
possible [ABKS13a].

• Branching model. A branching model embodies the rationales adopted
for branching and merging configuration items within a Version Control
Systems [WS02b]. It closely matches a team’s software development
process: it tells (1) how developers develop and collaborate with each
other for new development, (2) how engineers release software both to test
department and customers, and (3) how they deal with production fixes, i.e
bugs that occur to the software released to customers. There is no a one-fit-
all branching model, and each team needs to find its own.

• Code peering (or peering) refers to the practice that takes place during
product development, whereby product engineers inspect and compare
other products’ code with their own code, and if interested, merge the
other product’s code into his/her own product. Code peering is intended
to promote early reuse of product developments across product teams, with
the aim of lessening the merge problem during pruning.

• Core-assets (or core-asset base) refer to domain engineering artifacts
built “for reuse”. These can source code, requirement documents, domain
models, and test assets.

• Core-asset release (or SPL release) refers to the set of core-asset, tested
and ready to be reused by application engineering teams.

• Customization analysis refers to the practice by which SPL engineers

241

Supporting the Grow-and-Prune Model for Evolving Software Product Lines

analyzing how products have changed the core-assets they were derived
from. Customization analysis is intended to help SPL engineers identify
interesting customizations to be promoted to reusable core-assets for the
next core-asset release.

• Design Science Research is the scientific study and creation of artefacts as
they are developed and used by people with the goal of solving practical
problems of general interest.

• Domain engineering (DE) is the process of analyzing the domain of a
product line and developing reusable artifacts (a.k.a core-assets). Domain
engineering does not result in a specific software product, but prepares
artifacts to be used in multiple, if not all, products of a product line
[ABKS13a].

• Feature. A feature is prominent or distinctive user-visible aspect, quality,
or characteristic of a software system or systems [Kan90]. Features are used
in product line engineering to specify and communicate commonalities and
differences of the products between stakeholders, and to guide structure,
reuse, and variation across all phases of the software life cycle [ABKS13a].

• Feedback propagation refers to the process of updating the core-asset base
from product customizations that reside in already derived products.

• Grow-and-prune model refers to the approach of incrementally evolving
an SPL from product customizations. During the growth seasons, products
are allowed to customize the core-assets in order to attend to new customer
needs, resolve bugs, or enhance functionalities. The pruning phase returns
part of these product customizations to the core-asset base so they can be
later reuse by products.

• Merge problem arises during the pruning stage of the grow-and-prune
model, and refers to the issue of merging disparate product customizations,
which result in a multitude of conflicts, and whose time to be resolved
exceed the time it took to make the original changes.

• Product derivation (or product generation or product assembly) is the
production step of application engineering, where reusable artifacts are
combined according to the results of requirement analysis. Depending
on the implementation approach, this process can be more or less

242

BIBLIOGRAPHY

automated, possibly, involving several development and customization tasks
[ABKS13a]. This thesis considers product customization into product
derivation.

• Product customization (or customization) takes place during product
derivation, and refers to the process of changing the core-assets from which
products were derived from, or create brand-new assets, in order to meet
customer needs, or to resolve urgent bug-fixes.

• Update propagation refers to the process of updating already derived
products with newer core-asset versions available in newer domain
engineering.

• Software Product Line Engineering (SPLE) is the engineering of a
portfolio of related products using a shared set of engineering assets and
an efficient means of production [Kru06].

• Software Product Line (SPLs). A software product line is a set of
software-intensive systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or mission and that
are developed from a common set of core-assets in a prescribed way.

• Version Control Systems (VCSs) keep track of every change to a file over
time so early versions can be restored and are used by software teams for
source code.

243

_______________Summary

I’m interested in learning almost “everything”. Recent interests, out-
side the field of computer science, include fine arts and philosophy.
Can you guess the painting styles for the portraits above?

I wish I could be talented enough
to play any instrument, sing, or
dance. But I’m happy with just
playing the ukulele from time to
time :)

I did Judo during my childhood. I
like how the first thing you learn
is not how to throw, but how to fall,
and how to get up.

Born and raised in Portugalete.
I used to play next to the Vizcaya
Bridge.

	Introduction
	Overview
	Context
	General problem overview
	Problem statement for ``identify'': analyzing product customization
	Context & definitions
	Root-cause analysis
	Design Problem
	Research questions
	Contributions

	Problem statement for ``implement'': peering into peers
	Context & definitions
	Root-cause analysis
	Design Problem
	Research questions
	Contributions

	Problem statement for ``implement'': synchronizing core-assets and products
	Context & definitions
	Root-cause analysis
	Design Problem
	Research questions
	Contributions

	Research Methodology: Design Science Research
	Outline
	Conclusion

	Mapping Software Product Line Evolution
	Overview
	Introduction
	Background
	A brief on SPLs
	Related mapping studies

	Method
	Phase 1: Planning the review
	Protocol definition

	Phase 2: Study identification
	Conducting the search
	Filtering studies
	Evaluating the search

	Phase 3: Data extraction and classification
	Relevant topic keywording
	Data extraction and mapping

	Threats to validity
	Selection of studies
	Classification errors
	Evaluation rubric for this mapping study

	Mapping of primary studies
	Identify change
	Monitoring customers
	Monitoring the SPL environment
	Monitoring products

	Analyze and plan change
	Ascertaining the change impact scope
	Decision-making
	Planning and road-mapping

	Implement change
	Built-for-change
	Built-with-change
	Change synchronization

	Verify change
	Inconsistency detection
	Scalable verification

	 Analysis of the results
	RQ1: What types of research have been reported, to what extent, and how is coverage evolving?
	RQ2: Which product-derivation approach received most coverage, and how is this coverage evolving?
	RQ3: Which kind of SPL asset received more attention and how is this attention evolving?
	RQ4: Which activities of the evolution life-cycle received most coverage and how is this coverage evolving?
	Zooming into identify change
	Zooming into analyze and plan change
	Zooming into implement change
	Zooming into verify change

	Summary of the results
	Conclusion

	Analyzing product customization
	Overview
	Problem definition
	Motivating scenario
	A Data Warehouse approach to customization analysis
	Requirement analysis
	Dimensional modeling
	Reporting tools
	Evaluation
	Participants
	Training examples
	Procedure
	Results
	Discussion
	Threats to validity

	Related work
	Identifying changes at product level
	Commit untangling
	Visualization for SPLs

	Conclusion

	Peering into peers
	Overview
	Problem definition
	Characterizing the grow phase
	The merge problem
	Characterizing ``code peering'' in SPLs
	Code comparison for alleviating branch merging
	Code comparison within an SPL setting

	PeeringHub: a peering utility for GitHub
	PeeringHub: code peering in GitHub

	Evaluation
	Related work
	Conclusions

	Synchronizing core-assets and products
	Overview
	Problem definition
	Product derivation: illustrating the challenge
	Proposals on VCSs for SPL development
	Proposed branching models
	A Branching Model For Core-assets
	A Branching Model For Product Repositories

	SPL sync operations as first-class constructs in VCSs
	Product Fork
	Leveraging GitHub with ProductFork

	Update Propagation
	Leveraging GitHub with UpdatePropagation

	Feedback Propagation
	Leveraging GitHub with FeedBackPropagation

	Conclusion

	Conclusions
	Overview
	Results
	Publications
	Research visits
	Assessment and future research
	Conclusion

	Papers on SPL evolution classified on facets
	ETL at CustomDIFF
	Algorithms for the ETL process

	A brief on git
	Version Control Systems
	A brief on Git and GitHub
	Data Structures: the Git Object Model
	Git Basic Operations

	Branching models in VCSs

	Bibliography

